首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report vertical thermal structure and wind velocities in the Venusian mesosphere retrieved from carbon monoxide (12CO J=2-1 and 13CO J=2-1) spectral line observations obtained with the Heinrich Hertz Submillimeter Telescope (HHSMT). We observed the mesosphere of Venus from two days after the second Messenger flyby of Venus (on 5 June 2007 at 23:10 UTC) during five days. Day-to-day and day-to-night temperature variations and short-term fluctuations of the mesospheric zonal flow were evident in our data. The extensive layer of warm air detected recently by SPICAV at 90-100 km altitude is also detected in the temperature profiles reported here.These data were part of a coordinated ground-based Venus observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to contribute to a more thorough understanding of the global patterns of circulation of the Venusian atmosphere.  相似文献   

2.
Historically, the visual manifestation of the “Black Drop effect,” the appearance of a band linking the solar limb to the disk of a transiting planet near the point of internal tangency, had limited the accuracy of the determination of the Astronomical Unit and the scale of the Solar System in the 18th and 19th centuries. This problem was misunderstood in the case of Venus during its rare transits due to the presence of its atmosphere. We report on observations of the 15 November 1999 transit of Mercury obtained, without the degrading effects of the Earth's atmosphere, with the Transition Region and Coronal Explorer spacecraft. In spite of the telescope's location beyond the Earth's atmosphere, and the absence of a significant mercurian atmosphere, a faint Black Drop effect was detected. After calibration and removal of, or compensation for, both internal and external systematic effects, the only radially directed brightness anisotropies found resulted from the convolution of the instrumental point-spread function with the solar limb-darkened, back-lit, illumination function. We discuss these effects in light of earlier ground-based observations of transits of Mercury and of Venus (also including the effects of atmospheric “seeing”) to explain the historical basis for the Black Drop effect. The methodologies we outline here for improving upon transit imagery are applicable to ground-based (adaptive optics augmented) and space-based observations of the 8 June 2004 and 5-6 June 2012 transits of Venus, providing a path to achieving high-precision measurements at and near the instants of internal limb tangencies.  相似文献   

3.
Terrestrial lightning is generated by the separation of electric charge residing on water-ice particles in clouds, a few kilometers above the electrically conducting surface of the Earth. It is detected optically, electromagnetically, and aurally. The majority of discharges occur within or between clouds with about one third discharging to the surface of the Earth. Upward-propagating lightning also occurs with effects extending into the ionosphere. On Venus, the clouds are close to 50 km above the surface of the planet, where the temperatures and pressures are near those of Earth’s surface. In contrast the atmospheric pressure near the surface of Venus is nearly 100 times that of Earth. Thus, while intra- and inter-cloud lightning is expected to occur in a manner similar to that on Earth, we do not expect discharges from the clouds to the surface to occur. Upward-going lightning may be more frequent at Venus because the ionosphere is closer to the clouds. As at Earth, Venus lightning has been detected optically and electromagnetically from a variety of platforms. We find that some of the observed properties of lightning are different at the two planets. Many of the differences in the electromagnetic waves detected by spacecraft can be attributed to effects during ionospheric propagation to the spacecraft. We review the differences in the ionospheres of Earth and Venus and how they affect observations. We use both the Pioneer Venus electric antenna observations as well as the Venus Express magnetic measurements.  相似文献   

4.
We present a map of the global mean lower cloud coverage of Venus. This map is the average of 35 nights of 2.26 μm night side observations taken at NASA's Infrared Telescope Facility on Mauna Kea, over the years spanning 2001-2007. The atmosphere of Venus is a very dynamic system, and the lower clouds are constantly changing [Crisp, D., Allen, D.A., Grinspoon, D.H., Pollack, J.B., 1991a. The dark side of Venus: near-infrared images and spectra from the Anglo-Australian Observatory. Science, 253, 1263-1266]. By studying average cloud coverage, the daily variations are suppressed in order to see the underlying persistent cloud pattern. We find a relatively thick but highly variable equatorial band of clouds (±20° in latitude) and more quiescent mid-latitude clouds that are less opaque on average, with persistent cloudiness near the poles. We show that there is enough variation between our daily observations or between observations taken in different months that they cannot be considered individually representative of the global mean. We also compare the cloud coverage map to the topography of Venus and find no definitive correlations with high altitude features.  相似文献   

5.
Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the interaction of the Saturnian magnetospheric plasma flow with Titan’s ionosphere. The flux ropes at Venus and Mars were extensively studied from Pioneer Venus Orbiter and Mars Global Surveyor observations respectively during solar maximum. Based on the statistical properties of the observed flux ropes at Venus and Mars, the formation of a flux rope in the ionosphere is thought first to arise near the boundary between the magnetic barrier and the ionosphere and later to sink into the lower ionosphere. Venus flux ropes are also observed during solar minimum by Venus Express and the observations of developing and mature flux ropes are consistent with the proposed mechanism. With the knowledge of flux rope structure in the Venus ionosphere, the twisted fields in the lower ionosphere of Titan from Cassini observations are studied and are found to resemble the Venus flux ropes.  相似文献   

6.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

7.
《Planetary and Space Science》2006,54(13-14):1415-1424
The forthcoming observations by Venus Express provide an ideal opportunity to comprehensively study the atmosphere of Venus for the first time since Pioneer Venus (1978–1992), and for the first time ever in detail at polar latitudes. This article reviews some of our current knowledge from space and ground-based observations about the upper atmosphere of Venus, such as its thermal structure, the global distribution of gases and dynamics. We discuss the processes most likely responsible for phenomena such as the cold nightside cryosphere, the cloud top superrotation and waves, and highlight outstanding scientific challenges for Venus Express measurements. In particular, we describe an experiment to measure atmospheric drag using the on-board accelerometers.  相似文献   

8.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

9.
The resurfacing evolution of Venus has been evaluated through Monte Carlo simulations. For the first time, the sizes of volcanic flows in the models were generated using the frequency-size distribution of volcanic units measured on Venus. A non-homogeneous spatial generation of volcanic units was included in the models reproducing the Beta-Alta-Themis volcanic anomaly. Crater modification is simulated using a 3D approach. The final number of modified craters and randomness of the crater population were used to evaluate the success of the models, comparing the results from our simulations with Venus observations. The randomness of the crater population is evaluated using pair-correlation statistics. On the one hand, a catastrophic resurfacing event followed by moderate volcanic activity covering ≈40% of the planetary surface can reproduce the number of modified craters and the pair-correlation statistics do not reject randomness. On the other hand, the pair-correlation test for equilibrium steady-state resurfacing models rejects the randomness of the crater population when reproducing the observed frequency-size distribution of the volcanic units with a non-homogeneous spatial generation of volcanic units.  相似文献   

10.
Electrical activity in a planetary atmosphere enables chemical reactions that are not possible under conditions of local thermodynamic equilibrium. In both the Venus and terrestrial atmospheres, lightning forms nitric oxide. Despite the existence of an inventory of NO at Venus like the Earth’s, and despite observations of the signals expected from lightning at optical, VLF, and ELF frequencies, the existence of Venus lightning still is met with some skepticism. The Venus Express mission was equipped with a fluxgate magnetometer gradiometer system sampling at rates as high as 128 Hz, and making measurements as low as 200 km altitude above the north polar regions of Venus. However, significant noise levels are present on the Venus Express spacecraft. Cleaning techniques have been developed to remove spacecraft interference at DC, ULF, and ELF frequencies, revealing two types of electromagnetic waves, a transverse right-handed guided mode, and a linearly polarized compressional mode. The propagation of both types of signals is sensitive to the magnetic field in ways consistent with propagation from a distant source to the spacecraft. The linearly polarized compressional waves generally are at lower frequencies than the right-handed transverse waves. They appear to be crossing the usually horizontal magnetic field. At higher frequencies above the lower hybrid frequency, waves cannot enter the ionosphere from below when the field is horizontal. The arrival of signals at the spacecraft is controlled by the orientation of the magnetic field. When the field dips into the atmosphere, the higher frequency guided mode above the lower hybrid frequency can enter the ionosphere by propagating along the magnetic field in the whistler mode. These properties are illustrated with examples from five orbits during Venus Express’ first year in orbit. These properties observed are consistent with the linearly polarized compressional waves being produced at the solar wind interface and the transverse guided waves being produced in the atmosphere.  相似文献   

11.
A fast method is presented for deriving the tropospheric CO concentrations in the Venus atmosphere from near-infrared spectra using the night side 2.3 μm window. This is validated using the spectral fitting techniques of Tsang et al. [Tsang, C.C.C., Irwin, P.G.J., Taylor, F.W., Wilson, C.F., Drossart, P., Piccioni, G., de Kok, R., Lee, C., Calcutt, S.B., and the Venus Express/VIRTIS Team, 2008a. Tropospheric carbon monoxide concentrations and variability on Venus with Venus Express/VIRTIS-M observations. J. Geophys. Res. 113, doi: 10.1029/2008JE003089. E00B08] to show that monitoring CO in the deep atmosphere can be done quickly using large numbers of observations, with minimal effect from cloud and temperature variations. The new method is applied to produce some 1450 zonal mean CO profiles using data from the first eighteen months of operation from the Visible and Infrared Thermal Imaging Spectrometer infrared mapping subsystem (VIRTIS-M-IR) on Venus Express. These results show many significant long- and short-term variations from the mean equator-to-pole increasing trend previously found from earlier Earth- and space-based observations, including a possible North-South dichotomy, with interesting implications for the dynamics and chemistry of the lower atmosphere of Venus.  相似文献   

12.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

13.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

14.
The ESA/Venus Express mission spent more than 8 years in orbit around Venus to extensively study its atmosphere, ionosphere and plasma environment and unveil new aspects of its surface. Extensive reviews of the work of Venus Express are underway, to cover in-depth studies of the new face of Venus revealed by Venus Express and ground-based concurrent observations. This paper intends to give a summarized and wide overview of some of the outstanding results in all the science areas studied by the mission. This paper will first review the main aspects of the mission and its instrumental payload. Then, a selection of results will be reviewed from the outermost layers interacting with the Solar wind, down to the surface of Venus. As Venus Express is already considered by space agencies as a pathfinder for the future of Venus exploration, perspectives for future missions will be given, which will have to study Venus not only from orbital view, but also down to the surface to solve the many remaining mysteries of the sister planet of the Earth.  相似文献   

15.
A condensing cloud parameterization is included in a super-rotating Venus General Circulation Model. A parameterization including condensation, evaporation and sedimentation of mono-modal sulfuric acid cloud particles is described. Saturation vapor pressure of sulfuric acid vapor is used to determine cloud formation through instantaneous condensation and destruction through evaporation, while pressure dependent viscosity of a carbon dioxide atmosphere is used to determine sedimentation rates assuming particles fall at their terminal Stokes velocity. Modifications are described to account for the large range of the Reynolds number seen in the Venus atmosphere.Two GCM experiments initialized with 10 ppm-equivalent of sulfuric acid are integrated for 30 Earth years and the results are discussed with reference to “Y” shaped cloud structures observed on Venus. The GCM is able to produce an analog of the “Y” shaped cloud structure through dynamical processes alone, with contributions from the mean westward wind, the equatorial Kelvin wave, and the mid-latitude/polar Mixed Rossby/Gravity waves. The cloud top height in the GCM decreases from equator to pole and latitudinal gradients of cloud top height are comparable to those observed by Pioneer Venus and Venus Express, and those produced in more complex microphysical models of the sulfur cycle on Venus. Differences between the modeled cloud structures and observations are described and dynamical explanations are suggested for the most prominent differences.  相似文献   

16.
Submillimeter line observations of CO in the Venus middle atmosphere (mesosphere) were observed with the James Clerk Maxwell Telescope (JCMT, Mauna Kea) about the May 2000, February 2002 superior and July 1999, March 2001 inferior conjunctions of Venus. Combined 12CO and 13CO isotope spectral line measurements at 345 and 330 gHz frequencies, respectively, provided enhanced sensitivity and vertical coverage for simultaneous retrievals of atmospheric temperatures and CO mixing ratios over the altitude region 75-105 km with vertical resolution 4-5 km. Supporting millimeter 12CO spectral line observations with the Kitt Peak 12-m telescope (Steward Observatories) provide enhanced temporal coverage and CO mixing sensitivity. Implementation of CO/temperature profile retrievals for the 2000, 2002 dayside (superior conjunction) and 1999, 2001 nightside (inferior conjunction) periods yields a first-time definition of the vertical structure and diurnal variation of a low-to-mid-latitude mesopause within the Venus atmosphere. At the times of these 1999-2002 observations, the Venus mesopause was located at a slightly lower level in the nightside (0.5 mbar, ∼87 km) versus the dayside (0.2 mbar, ∼91 km) atmosphere. Average diurnal variation of Venus mesospheric temperatures appears to be ≤ 5 K at and below the mesopause. Diurnal variation of Venus thermospheric temperatures increases abruptly just above the mesopause, reaching 50 K by the 0.01-mbar pressure level (∼102 km). Atmospheric temperatures above and below the Venus mesopause exhibited global-scale (≥4000 km horizontal) variations of large amplitude (7-15 K) on surprisingly short timescales (daily to monthly) during the 2001 nightside and 2002 dayside observing periods. Venus dayside mesospheric temperatures observed during the 2002 superior conjunction were also 10-15 K warmer than observed during the 2000 superior conjunction. A characteristic timescale for these global temperature variations is not defined, but their magnitude is comparable to previous determinations of secular variability in nightside mesospheric temperatures (Clancy and Muhleman, 1991).  相似文献   

17.
There is a general belief that hydrous minerals cannot exist on Venus under current surface conditions. This view was challenged when Johnson and Fegley (2000, Icarus 146, 301-306) showed that tremolite (Ca2Mg5Si8O22(OH)2), a hydrous mineral, is stable against thermal decomposition at current Venus surface temperatures, e.g., 50% decomposition in 4 Ga at 740 K. To further explore hydrous mineral thermal stability on Venus, we experimentally determined the thermal decomposition kinetics of fluorine-bearing tremolite. Fluor-tremolite is thermodynamically more stable than OH-tremolite and should decompose more slowly. However how much slower was unknown. We measured the decomposition rate of fluorine-bearing tremolite and show that its decomposition is several times to greater than ten times slower than that of OH-tremolite. We also show that F-bearing tremolite is depleted in fluorine after decomposition and that fluorine is lost as a volatile species such as HF gas. If tremolite ever formed on Venus, it would probably also contain fluorine. The exceptional stability of F-bearing tremolite strengthens our conclusions that if hydrous minerals ever formed on Venus, they could still be there today.  相似文献   

18.
The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1° by 1° in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a ‘sponge layer’ to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus’ cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus’ atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics.  相似文献   

19.
We present submillimeter observations of 12CO J=3-2 and 2-1, and 13CO J=2-1 lines of the Venusian mesosphere and lower thermosphere with the Heinrich Hertz Submillimeter Telescope (HHSMT) taken around the second MESSENGER flyby of Venus on 5 June 2007. The observations cover a range of Venus solar elongations with different fractional disk illuminations. Preliminary results like temperature and CO abundance profiles are presented.These data are part of a coordinated observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to contribute to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to a more thorough understanding of the global patters of circulation of the Venusian atmosphere.  相似文献   

20.
The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号