首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

2.
The Ko?ice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Ko?ice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan‐like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black‐gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe‐Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase‐like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Ko?ice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Ko?ice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Ko?ice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron‐microprobe analysis (EMPA) with focused and defocused electron beam, whole‐rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration‐free laser induced breakdown spectroscopy (CF‐LIBS) were used to characterize the Ko?ice fragments. The results provide further evidence that whole‐rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF‐LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.  相似文献   

3.
Abstract— A new meteorite find from the Nullarbor Plain in Australia was studied using optical, SEM, and electron microprobe techniques. The meteorite, Nullarbor 018, is an orthodox L6 chondrite that experienced minor-to-moderate alteration of metal during terrestrial weathering (grade A–B to B). During weathering, troilite was preferentially altered, and roughly 20% of the original complement of S in the meteorite was removed. Shock metamorphic effects corresponding to shock stage S4 (or shock facies d) are found, including the presence of some diaplectic feldspar (maskelynite). The meteorite is not obviously paired with other finds from the Nullarbor region, but the possibility that it is paired cannot be excluded.  相似文献   

4.
Abstract— The Cerro los Calvos meteorite is a single stone of 68.5 g found in the Nuevo Mercurio strewn field of Zacatecas, Mexico (24°20′N, 102°8′W). It is an unusual H4 chondrite. Its olivine (Fa12.5) and orthopyroxene (Fs 11.7, Wo 0.8) are reduced relative to typical H chondrites. The La Banderia meteorite of 54.3 g from the same vicinity is an LL5 chondrite of shock classification e.  相似文献   

5.
Abstract— Roosevelt County (RC) 075 was recovered in 1990 as a single 258-gram stone. Classification of this meteorite is complicated by its highly unequilibrated nature and its severe terrestrial weathering, but we favor H classification. This is supported by O isotopes and estimates of the original Fe, Ni metal content. The O isotopic composition is similar to that of a number of reduced ordinary chondrites (e.g., Cerro los Calvos, Willaroy), although RC 075 exhibits no evidence of reduced mineral compositions. Chondrule diameters are consistent with classification as an L chondrite, but large uncertainties in chondrule diameters of RC 075 and poorly constrained means of H, L and LL chondrites prevent use of this parameter for reliable classification. Other parameters are compromised by severe weathering (e.g., siderophile element abundances) or unsuitable for discrimination between unequilibrated H, L and LL chondrites (e.g., Co in kamacite, δ13C). Petrologic subtype 3.2± 0.1 is suggested by the degree of olivine heterogeneity, the compositions of chondrule olivines, the thermoluminescence sensitivity, the abundances and types of chondrules mapped on cathodoluminescence mosaics, and the amount of presolar SiC. The meteorite is very weakly shocked (S2), with some chondrules essentially unshocked and, thus, is classified as an H3.2(S2) chondrite. Weathering is evident by a LREE enrichment due to clay contamination, reduced levels of many siderophile elements, the almost total loss of Fe, Ni metal and troilite, and the reduced concentrations of noble gases. Some components of the meteorite (e.g., type IA chondrules, SiC) appear to preserve their nebular states, with little modification from thermal metamorphism. We conclude that RC 075 is the most unequilibrated H chondrite yet recovered and may provide additional insights into the origin of primitive materials in the solar nebula.  相似文献   

6.
The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4–5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.  相似文献   

7.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

8.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

9.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   

10.
Abstract— The Yaringie Hill meteorite is a new H5 ordinary chondrite found in the Gawler Ranges, South Australia. The meteorite, which shows only minor signs of terrestrial weathering, is predominantly composed of olivine (Fa17.2), orthopyroxene (Fs15.1Wo1.1), and three distinct phases of nickeliferous iron metal (kamacite, taenite, tetrataenite). Other minerals include troilite, plagioclase (Ab81An16Or3), clinopyroxene (En52Wo42Fs6), chlorapatite, merrillite, ilmenite, and native copper. Three types of spinel with distinctive textures (coarse, skeletal aggregates, rounded aggregates) and with compositions close to the join MgAl2O4‐FeCr2O4 are also present. Chondrules within the Yaringie Hill meteorite, which often have poorly defined boundaries, are placed in a recrystallized matrix. Shock indicators suggest that the meteorite experienced only weak shock metamorphism (S3).  相似文献   

11.
Abstract— Meteoritical Bulletin, No. 81 lists 181 new meteorites. Noteworthy among these are a new lunar meteorite (Dar al Gani 262), four observed falls (Dong Ujimqin Qi, Galkiv, Mount Tazerzait, and Piplia Kalan), four irons (Albion, Great Sand Sea 003, Hot Springs, and Mont Dieu), two mesosiderites (Dong Ujimqin Qi and Lamont), an acapulcoite (FRO 95029), a eucrite (Piplia Kalan), two probably-paired ureilites (Dar al Gani 164 and 165), an R chondrite (Hammadah al Hamra 119), an ungrouped type-3 chondrite (Hammadah al Hamra 180), a highly unequilibrated ordinary chondrite (Wells, LL3.3), and a variety of carbonaceous and unequilibrated ordinary chondrites from Libya and Antarctica. All italicized abbreviations refer to addresses listed in the appendix.  相似文献   

12.
Abstract— Studies of 52 specimens recovered from the find site of the original Travis County meteorite reveal the presence of two distinct meteorites. Travis County (a), which includes the original Travis County meteorite, is the more abundant meteorite and is classified as an H5(S4) shock-blackened chondrite. Travis County (b) is classified as an H4(S2) chondrite with rare chondritic clasts of H group parentage, indicating that the meteorite is a breccia.  相似文献   

13.
Abstract— The Burnwell, Kentucky, meteorite fell as a single stone on 1990 September 4. The Burnwell meteorite has lower Fa in olivine (15.8 mol%), Fs in orthopyroxene (13.4 mol%), Co in kamacite (0.36 wt%), FeO from bulk chemical analysis (9.43 wt%), and Δ17O (0.51 ± 0.02%), and higher Fe, Ni, Co metal (19.75 wt% from bulk wet chemical analysis) than observed in H chondrites. The Burnwell meteorite plots on extensions of H-L-LL chondrite trends for each of these properties towards more reducing compositions than in H chondrites. Extensions of this trend have been previously suggested in the case of other low-FeO chondrites or silicate inclusions in the HE iron Netschaëvo, but interpretation of the evidence in these meteorites is complicated by terrestrial weathering, chemical disequilibrium or reduction. In contrast, the Burn-well meteorite is an equilibrated fall that exhibits no evidence for reduction. As such, it provides the first definitive evidence for extension of the H-L-LL ordinary chondrite trend beyond typical H values towards more reducing compositions.  相似文献   

14.
A meteorite fall was heard and collected on July 13, 2010 at about 18:00 (local time) in the Shibanjing village of the Huaxi district of Guiyang, Guizhou province, China. The total mass of the fall is estimated to be at least 1.6 kg; some fragments are missing. The meteorite consists mainly of olivine, low‐Ca pyroxene, high‐Ca pyroxene, plagioclase, kamacite, taenite, and troilite. Minor phases include chromite and apatite. Various textural types of chondrules exist in this meteorite: most chondrule textures can be easily defined. The grain sizes of secondary plagioclase in this meteorite range from 2 to 50 μm. The chemical composition of olivine and low‐Ca pyroxene are uniform; Fa in olivine and Fs in low‐Ca pyroxene are, respectively, 19.6 ± 0.2 and 17.0 ± 0.3 (mole%). Huaxi has been classified as an H5 ordinary chondrite, with a shock grade S2, and weathering W0. The weak shock features, rare fractures, and the high porosity (17.6%) indicates that Huaxi is a less compacted meteorite. The preatmospheric radius of Huaxi is ~11 cm, corresponding to ~21 kg. The meteorite experienced a relatively short cosmic‐ray exposure of about 1.6 ± 0.1 Ma. The 4He and 40Ar retention ages are older than 4.6 Ga implying that Huaxi did not degas after thermal metamorphism on its parent body.  相似文献   

15.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

16.
The Oro Grande, New Mexico, U.S.A., chondrite was found in 1971. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 19.3 mole percent), orthopyroxene (Fs 16.2 mole percent), diopside, feldspar (An 13.6 mole percent), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. A bulk chemical analysis of the meteorite shows the following results (weight percent): Fe 0.84, Ni 1.46, Co 0.07, FeS 3.62, SiO2 34.18, TiO2 0.14, Al2O3 1.83, Cr2O3 0.55, Fe2O3 21.25, FeO 9.13, MnO 0.31, MgO 21.52, CaO 1.72, Na2O 0.70, K2O 0.08, P2O5 0.25, H2O+ 2.14, H2O- 0.40, C 0.22, Sum 100.41. On the basis of composition and texture, the Oro Grande meteorite is classified as an H5 chondrite. A large lithic fragment (~5 mm long) with a very fine-grained texture different from that of the host meteorite was analyzed for bulk composition using the broad beam of an electron microprobe, and was found to be enriched in Ca, Al, Na, and K, and depleted in Mg and Fe relative to the bulk composition of the host meteorite. Its mineral compositions, however, are very similar to those of the host. It is suggested that the fragment is not a xenolith of a previously undescribed type of achondrite, but is probably an impact-produced partial melt of the host chondrite or a fragment of an unusually large chondrule.  相似文献   

17.
Abstract— We have classified 12 new, moderately to severely weathered meteorites from Roosevelt County, New Mexico (RC 079–090) that were recovered between 1969 and 1993. They include nine H chondrites and three L chondrites of petrologic types 4 to 6 and shock classification S1 to S4. Among these are a flight-oriented specimen of an H5 chondrite, an L4 chondrite with a porphyritic impact-melt rock clast, an H5 fragmental breccia with an unusual weathering assemblage (probably a Ca sulfate), and an H4 chondrite with unequilibrated pyroxenes.  相似文献   

18.
Abstract The Chervettaz meteorite was an observed fall on 1901 November 30. Our study confirms the previous classification as an L5 chondrite. Weak deformations indicate stage S3 of shock deformations.  相似文献   

19.
Al Haggounia 001 and paired specimens (including Northwest Africa [NWA] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low‐Ca pyroxene; (2) dispersion of metal‐sulfide blebs within silicates causing “darkening”; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S2 bubbles that infused the melt; (5) formation of immiscible silicate and metal‐sulfide melts; (6) shock‐induced transportation of the metal‐sulfide melt to distances >10 cm; (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite's bulk chemical composition: e.g., impact melting and loss of a metal‐sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.  相似文献   

20.
Abstract— The Julesburg chondrite, a single stone weighing 57.9 kg, was found in 1983 in Sedgewick County, Colorado, USA. It contains abundant chondrules and chondrule fragments but little fine-grained matrix. The olivine composition ranges from Fa1 to Fa25 but a frequency plot of olivine compositions is strongly peaked at Fa23. The low-Ca pyroxenes range from Fs3 to Fs28 and show no dominant composition. The abundance of clearly defined chondrules, the heterogeneity of the silicates and the presence of glass within chondrules indicate a type 3 chondrite, refined by thermoluminescence data to 3.6. The total iron content of 20.46% is indicative of an L-group stone. The low noble gas retention ages indicate that this meteorite was outgassed late in its history. This is supported by petrographic evidence of brecciation and shock. Aluminum-rich spinels within chondrules and inclusions contain up to 2.6% ZnO which suggests that they formed in a volatile-rich environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号