首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Using a perturbated (noised) dipole model of a sunspot magnetic field structure we simulated the influence of background noise or apparent noise (unresolved small-scale magnetic field structure) on sunspot magnetic field parameters. We evaluated mean values of the vertical and horizontal electric current densities |j| and |j|, respectively, of the force-free parameter α and of the Lorentz force |F|. For comparison we estimated |j| and |F| of a standard sunspot magnetic field model (return-flux model, OSHEROVICH 1982). Furthermore, we compared our results with those from observations resulting in estimated values of |j| for quiet sunspots. Our investigation led to the following results: the estimated values of 〈|F|〉 show clearly that due to the noise the axisymmetric magnetic dipole model is clustered into several subsystems of fluxbundles. The latter are connected with a system of electric current densities of the order of |j| ∼ 10−3 Am−2 and |j| = 10−1 Am−2, i.e., this system is a noise-generated nonaxisymmetric magnetohydrostatic model.  相似文献   

2.
A new pumping mechanism – methanol masers without population inversion is presented in this paper. It can be used to explain the formation of a series of J 0J -1 E methanol masers, while the 21 → 30 A + methanol masers are regarded as a driving coherent micrwave field. In the new mechanism, the intensities of J 0 - J -1 E methanol masers are increased with the decreasing transition frequencies (or with rotational number J, approximately). These results agree with Slysh et al. (1995) and Slysh et al. (1999) J ≤ 5 observations for G3345.01+1.79 and W48, in which both J 0J -1 E and 21 → 30 A + methanol masers are detected coincidentally. Other astronomical conditions, such as magnetic field, 21 → 30 A + coherent radition, incoherent pumping rate by thermal radition and so on are also discussed. The new mechanism can operate as a complement to other ordinary maser pumping mechanisms for some class II methonal maser sources. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Abstract— Yamato 000593, a nakhlite, was analyzed in terms of its magnetic record and magnetomineralogy. The natural remanent magnetization (NRM: 3.55–6.07 times 10?5 Am2/kg) was thermally demagnetized at ~320 °C, and it was unstable against alternating field demagnetization. Based on analyses of thermomagnetic curves, the temperature dependence of hysteresis parameters, and microscopic observations, the magnetic minerals mainly consist of magnetite (0.68 wt% of the sample, including ~5% Fe2TiO4) of less than 100 μm in size, associated with minor amounts of monoclinic pyrrhotite (<0.069 wt% of the sample) and goethite. Thermal demagnetization of NRM at ~330 °C is explained due to an offset of magnetization of antipodal NRM components of magnetite, whereas it is not due to a pyrrhotite Curie point. Large magnetite grains show exsolution texture with ilmenite laths, and are cut by silicate (including goethite) veins that formed along cracks. Numerous single‐domain (SD) and pseudo‐single‐domain (PSD) magnetite grains are scattered in the mesostasis and adjacent olivine grains. Moderate coercive forces of HC = 6.8 mT and HRC = 31.1 mT suggest that Yamato 000593 is fundamentally able to carry a stable NRM; however, NRM was found to be unstable. Accordingly, the meteorite was possibly crystallized at 1.3 Ga under an extremely weak or absent magnetic field, or was demagnetized by impact shock at 12 Ma (ejection age) on Mars. This finding differs from the results of previous paleomagnetic studies of SNC (shergottites, nakhlites, chassignites, and orthopyroxenite) Martian meteorites. The significant dipole magnetic field resulting from the molten metallic core was probably absent during the Amazonian Epoch (after 1.8 Ga) on Mars.  相似文献   

4.
We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy EM and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self‐similarity of the magnetic power spectrum alone implies that ξt1/2. This in turn implies that magnetic helicity decays as Ht–2s, where s = (ξdiff/ξH)2, in terms of ξdiff, the diffusion length scale, and ξH, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as EMt–1/2–2s. The parameter s is inversely proportional to the magnetic Reynolds number ReM, which is constant in the self‐similar regime. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The canonical equations of motion of an artificial lunar satellite are formulated including the effects of the asphericity of the Moon comprising the harmonics J 2, J 22, J 3, J 31, J 4 andJ 5, the oblateness of the Earth up to the second zonal harmonic, as well as the disturbing function due to the attractions of the Earth and of the Sun (terms are retained up to order 10-6 for the higher orbits and 10-8 for the lower orbits). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We have undertaken mapping and spectroscopy of a broad range of type I post-Main-Sequence nebulae in COJ=1→0,J=2→1, andJ=3→2, using the 12 m antenna at Kitt Peak, and the 45 m facility of the Nobeyama Radio Observatory. As a consequence, we find COJ=2→1 emission associated with NGC 3132 and NGC 6445, determine the location of COJ=1→0 emission in the nucleus of NGC 6302, and obtain (for the first time) COJ=3→2 spectroscopy for a substantial cross-section of type I sources. LVG analysis of the results suggests densitiesn(H2) ~ 104 cm?3, and velocity gradients dv/dr ~ 2×102 in both NGC 7027 and CRL 618, commensurate with uniform expansion of a constant velocity outflow, whilst for the case of NGC 2346 these values probably exceedn(H2) ~ 4.0×105 cm?3. dv/dr ~ 2.6×103 km s?1 andT k ~102 K, implying appreciable compression (and shock heating?) of the CO excitation zone. Hi masses extend over a typical range 0.01<M(Hi)/M <1, whilst corresponding estimates of the progenitor mass imply 0.7<M prog/M <2.3; values significantly in excess of those pertinent for normal PN, although somewhat at the lower end of the type I mass range. COJ=3→2 profiles for CRL 2688 confirm the presence of an extended plateau with width Δv~85 km s?1, whilst modestJ=3→2 enhancement is also observed for the high-velocity components in NGC 7027. TheJ=3→2 spectrum for NGC 2346 appears to mimic lower-frequency results reasonably closely, confirming the presence of a double-peaked structure towards the core, and predominantly unitary profiles to the north and south, whilst there is also evidence to suggest appreciableJ=3→2 asymmetry in CRL 618 compared to lower-frequency measures. The status of an extended cloud near HB 5 remains uncertain, although this clearly represents a remarkably complex region with velocity span ΔV~50 km s?1. Our presentJ=3→2 results appear to track lower frequency measures extremely closely, implying local densitiesn(H2)>3×103 cm?3—although temperatures close to theV lsr of HB 5 are relatively weak, and of orderT MB (J=3→2)≤0.9 K. Finally, as a result of both this, and previous investigations we find that of type I sources so far observed in CO, some ~42% appear to possess detectable levels of emissionT r * >0.1 K. Similarly, in cross-correlating this data with other results, we note a closely linear relation betweenJ=2→1 antenna temperaturesT MB, and the surface brightness of H2 S(1) quadrupole emissionS(H2)—a trend which appears also to be reflected betweenS(H2) and corresponding parameters for [Oi], [Oii], [Ni], [Nii], and [Sii]. Such relations almost certainly arise from comparable secular variations in line intensities, although the CO, H2, and optical emission components are likely to derive from disparate line excitation zones. As a consequence, it is clear that whilst H2 S(1) emission is probably enhanced as a result of local shock activity, the evidence for post-shock excitation of the CO and optical forbidden lines is at best marginal. Similarly, although it seems likely that CO emission derives from circum-nebular Hi shells with kinetic temperatureT k ~ 30 K or greater, the predominant fraction of low-excitation emission arises from a mix of charge exchange reactions, nebular stratification and, probably most importantly, the influence of UV shadow zones and associated neutral inclusions.  相似文献   

7.
We have determined the real and imaginary indices of refraction (n and k) for six iron oxide/oxyhydroxide phases—magnetite, maghemite, goethite, lepidocrocite, akaganéite, and ferrihydrite. A single crystal of magnetite was used to derive bulk n and k values from 100-2000 cm−1 (5-100 μm). Synthetic nanocrystalline samples of maghemite, goethite, lepidocrocite, akaganéite, and ferrihydrite were pressed into compact pellets used to determine bulk n and k values from 100-1200 cm−1 (8.33-100 μm). All values of n and k (the optical constants) were determined from specular reflectance spectra acquired at 2 cm−1 spectral sampling using classical Lorentz-Lorenz dispersion theory. In this paper, we present the optical constants of all six minerals and the oscillator parameters with which they were modeled. Use of these optical constants could aid in radiative transfer models of terrestrial dust as well as Mars, the Moon, and airless bodies in the Solar System.  相似文献   

8.
The electron collision excitation rates recently calculated for transitions in Si xiii by Keenan et al. (1987) are used to derive the electron temperature sensitive ratio G(=(f + i)/r and the density sensitive ratio R(=f/i), where i, f, and r are the intercombination (1s 2 1 S – 1s2p 3 P 1, 2) forbidden (1s 2 1 S – 1s2s 3 S), and resonance (1s 2 1 S – 1s2p 1 P), transitions respectively. Also estimated are the values of R in the low-density limit (R 0) as a function of electron temperature. The theoretical G ratio at the temperature of maximum emissivity for Si xiii, G(T m) = 0.70, is in much better agreement with the observed G for the 1985, May 5 flare determined by McKenzie et al. (G = 0.60 ± 0.07) than is the earlier calculation of Pradhan, who derived G(T m) = 0.85. The error in the observed R 0 ratio is so large that both our result and Pradhan's fall within the acceptable limits of uncertainty and hence one cannot estimate which of the two is the more accurate.  相似文献   

9.
Abstract— We present a purely physical model for the calculation of depth‐dependent production rates in 2π exposure geometries by galactic cosmic rays (GCR). Besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on the integral number of GCR particles in the lunar orbit. We derived this value from adjusting modeled depth profiles for 10Be, 26Al, and 53Mn to measured data from the Apollo 15 drill core. The J0,GCR value of 4.54 cm?2 s?1 and the solar modulation parameter of M = 490 MeV determined this way for 1 AU is in reasonable agreement with the J0,GCR value derived recently for the meteoroid orbits (Leya et al., 2000b). We also show that the mean GCR proton spectrum in the lunar orbit has not changed substantially over about the last 10 Ma. For the major target elements we present depth‐dependent production rates for 10Be, 14C, 26Al, 36Cl and 53Mn, as well as for the rare gas isotopes 20,21,22Ne. In addition we present production rates for 36,38Ar from Fe and Ni. The new results are consistent with the data for stony meteoroids presented recently by our group (Leya et al., 2000b), but for the rare gas isotopes the new production rates sometimes differ significantly from earlier estimates. The applicability of the 22Ne/21Ne ratio as a shielding parameter is also discussed.  相似文献   

10.
Abstract— We have studied 74 single presolar silicon carbide grains with sizes between 0.2 and 2.6 μm from the Murchison and Murray meteorites for Ba isotopic compositions using NanoSIMS. We also analyzed 7 SiC particles either consisting of sub‐micron‐size SiC grains or representing a morphologically and isotopically distinct subgroup. Of the 55 (likely) mainstream grains, originating from asymptotic giant branch (AGB) stars, 32 had high enough Ba contents for isotopic analysis. For 26 of them, CsHx interferences were either negligible or could be corrected with confidence. They exhibit typical s‐process Ba isotopic patterns with slightly higher than solar 134Ba/136Ba and lower than solar 135,137,138Ba/136Ba ratios. Results are generally well explained in the context of neutron capture nucleosynthesis in low mass (1–3 M) AGB stars and provide constraints on AGB models, by reducing the needed 13C spread from factor of ~20 down to 2. Out of the 19 supernova X grains, three had sufficient concentrations for isotopic analysis. They tend to exhibit higher than solar 134Ba/136Ba and 138Ba/136Ba ratios, close to solar 137Ba/136Ba, and 135Ba/136Ba lower than solar but higher than in mainstream grains. This signature could indicate a mixture of n‐burst type Ba with either “normal Ba” more s‐process‐rich than solar, or normal Ba plus weak s‐process Ba. In the n‐burst component Cs may have to be separated from Ba at ~10 years after the SN explosion. Depending on predictions for its composition, another possibility is early separation (at ~1 year) coupled with addition of some unfractionated n‐burst matter. Abundances of trace elements (Sr, Zr, Cs, La, and Ce) analyzed along with Ba signify that implantation may have been an important process for their introduction.  相似文献   

11.
We present results of an optical and near‐infrared (IR) 1.8 deg2 survey in the Pleiades open cluster to search for substellar objects. From optical I ‐band images from the CFHT and J ‐band images from the 3.5m CAHA Telescope, we identify 18 faint and very red L brown dwarf candidates, with I > 20.9 and I – J > 3.2. The follow‐up observations of nine objects in the H ‐ and K s‐bands confirm that eight belong to the IR sequence of the cluster and the proper motion measurements of seven candidates confirm that they are Pleiades members. A preliminary estimation of the substellar mass spectrum dN/ dM in the form of a power law M cα provides α = +0.57 ± 0.14. We extrapolate this function to estimate the number of planetary mass objects that could be present in the cluster down to 1 MJup. Sensitive searches combining far red and near‐IR observations may unveal these objects in a near future. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Methanol 72–81 A + is mapped for the first time in Orion KL. Analysing the observed data and solving the statistical equilibrium and radiative transfer equations, it is concluded that line series ofJ 2–(J+1)1 A + (J=7,8,9) is in quasi-thermal emission rather than the masers in Orion KL. The maser spots of methanolJ 2J 1 E (J=6,7) and 80–71 A + are distributed in the northeast part of the contour plot of 72–81 A +. The physical conditions of the regions of maser seriesJ 0–(J–1)1 A + (J=7,8,9) are discussed. Also from the calculation results another maser seriesJ 1–(J–1)2 A (J=10,11,12) that might coexist with maser seriesJ 2J 1 E, is found. The sizes of the 2-dimension Gaussian fit plots of methanol 72–81 A + and HCOOCH3 10(0,10)–9(0,9)A are almost the same, and the main parts overlap each other.  相似文献   

13.
We describe the results of our magnetometric monitoring of two white dwarfs: 40 Eri B and WD 0009+501. We found periodic variations in the longitudinal magnetic field of 40 Eri B. The field variability with an amplitude of ~4 kG and a zero mean is discussed in terms of an oblique rotator model. The rotation period is ~5 h 17 min, but there is another period of 2 h 25 min that may be related to nondipolar field components. The published projected rotational velocities of 40 Eri B measured from a narrow non-LTE Hα peak V sin i?8 km s?1 are in good agreement with our measurements of the magnetic field and the rotation period. The combined effect of magnetic and rotational broadening of the central Hα component constrains the rotation period, P? 5.2 h. We discovered the rotation period (1.83 h) of the magnetic white dwarf WD 0009+501. The period was found from the periodically varying magnetic field of the star with a mean 〈Be〉 = ?42.3±5.4 kG and a half-amplitude of 32.0±6.8 kG.  相似文献   

14.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

15.
This paper presents the RCGP catalogue of more than 0.5 million candidate red clump stars with the limiting magnitude K s = 9.5 m . These stars are selected from the PPMX catalogue as the most probable red clump members by analyzing the color-reduced proper motion diagrams built from the proper motions given in PPMX and J, K s -photometry given in the 2MASS catalogue. Reddening of the selected stars is used to find extinction in the K s -band and to consider it in the further analysis. The two-dimensional galactic rotation model generalized by Ogorodnikov is used to investigate the tangential velocity field of the selected red clump members, most of which are thin disk stars located within 1.5 kpc from the sun. The values of kinematic parameters and solar components are determined as a function of stellar heights above the galactic equatorial plane and their heliocentric distances.  相似文献   

16.
Using the Submillimeter Array (SMA), we have obtained high angular-resolution (∼1″) interferometric maps of the submillimeter (0.88 mm) continuum and CO J=3–2 line from IRAS 22036+5306 (I 22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNe. In addition, we have obtained supporting lower-resolution (∼10″) 2.6 mm continuum and CO, 13CO J=1–0 observations with the Owens Valley Radio Observatory (OVRO) interferometer. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I 22036, implying a very substantial mass (0.02–0.04M ) of large (i.e., radius ≳1 mm), cold (≲50 K) dust grains associated with I 22036’s toroidal waist. The CO J=3–2 observations show the presence of a very fast (∼220 km s−1), highly collimated, massive (0.03M ) bipolar outflow with a very large scalar momentum (about 1039 g cm s−1), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The fast outflow in I 22036, as in most PPNe, cannot be driven by radiation pressure. The large mass of the torus suggests that it has most likely resulted from common-envelope evolution in a binary, however it remains to be seen whether or not the time-scales required for the growth of grains to millimeter sizes in the torus are commensurate with such a formation scenario. The presence of the torus should facilitate the formation of the accretion disk needed to launch the jet. We also find that the 13C/12C ratio in I 22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO-nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the torus and an extended dust shell inferred from ISO far-infrared spectra) and the high 13C/12C ratio in I 22036 provides strong support for this object having evolved from a massive (≳4M ) progenitor in which hot-bottom-burning has occurred.  相似文献   

17.
We present CCD BV and JHK s 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting magnitude of V∼19 mag. The star-count method showed that the centre of the cluster lies at α 2000=04 h 09 m 36 s , δ 2000=49°2843 and its angular size is r=10 arcmin. The optical and near-infrared two-colour diagrams revealed the colour excesses in the direction of the cluster as E(BV)=0.68±0.06, E(JH)=0.21±0.02 and E(JK s )=0.33±0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age Main-Sequences (ZAMS) provided an average distance modulus of (mM)0=10.80±0.13 mag, which can be translated into a distance of 1440±80 pc. Finally, using Padova isochrones we determined the metallicity and age of the cluster as Z=0.015±0.004 ([M/H]=−0.10±0.10 dex) and log (t/yr)=8.40±0.04, respectively.  相似文献   

18.
Deep J- and K s-band images covering a 5 × 5 arcmin area centred on the NTT Deep Field have been obtained during the Science Verification of SOFI at the NTT. These images were made available via the Web in early June, 1998. The preliminary results we have obtained by the analysis of these data are the following: (i) the counts continue to rise with no evidence of a turnover or of a flattening down to the limits of the survey (K s = 22.5 and J = 24 mag); (ii) we find a slope d log(N)/dm≈ 0.37, in agreement with most of the faintest surveys but much steeper than the Hawaii survey; (iii) fainter than K s ≈ 19and J ≈ 20 mag, the median J-K colour of galaxies shows a break in its reddening trend turning toward bluer colours; (iv) faint bluer galaxies also display a larger compactness index, and a smaller apparent size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
During the recent apparition of Comet Halley in 1985-86 a transient ionic event in the form of a blob of H2 O+ emission was recorded in thecoma at ~ 0h UT on 1986 March 13. Observations were carried out using a special IHW filter for H2 O+ emission at 7000 å/175 å, a 35 cm telescope, a Fabry-Perot interferometer and an image intensifier camera from Gurushikhar, Mt Abu. (24?39’N,72? 47’E). A Fabry-Perot inter-ferogram in Ha taken a few minutes later at the same location reveals strong hydrogen emission (Hα) associated with the blob. The velocity field in the blob is structured with relative velocities upto ~ 35km s?1. The event is interpreted as arising due to the sector boundary crossing of the interplanetary magnetic field by the comet  相似文献   

20.
Abstract— Video observations of the Leonid shower aboard two aircraft in the 1998 Leonid multi-instrument aircraft campaign and from ground locations in China are presented. Observing at altitude proved particularly effective, with four times higher rates due to low extinction and low angular velocity at the horizon. The rates, derived from a total of 2500 Leonid meteors, trace at least two distinct dust components. One dominated the night of 1998 November 16/17. This two-day wide component was rich in bright meteors with r = N (m + 1)/N (m) ≈ 1.5 (s = 1.4) and peaked at an influx of 3.1 ± 0.4 × 10?12 m?2 s?1 (for particles of mass <7 × 10?5 g) at solar longitude Λ0 ≈ 234.52 (Eq. J2000). The other more narrow component peaked on 1998 November 17/18 at Λ0 = 235.31 ± 0.01. Rates were elevated above the broad component between Λ0 = 235.15 and 235.40, symmetric around the current node of the parent comet 55P/Tempel-Tuttle, peaking at 5.1 ± 0.2 × 10?12 m?2 s?1. The population index was higher, r = 1.8 ± 0.1 (s = 1.7), but not as high as in past Leonid storms (r = 3.0). The flux profile of this component has an unusual asymmetric shape, which implies a blend of contributions from at least two different but relatively recent epochs of ejection. The variation of r across the profile might be due to mass-dependent ejection velocities of the narrowest component. High rates of faint meteors occurred only in an isolated five-minute interval at Λ0 = 235.198, which is likely the result of a single meteoroid breakup in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号