首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical patterns from two lag anomalies in the Cobar region of central New South Wales are described. The region is semi-arid, deeply weathered and some areas are covered by variable thicknesses of aeolian and alluvial transported overburden.Lag morphology and mineralogy are related to landform. In erosional landforms the surface is covered by lag, which is composed of coarse fragments derived locally from bedrock and displays varying degrees of ferruginization, together with a range of secondary pisoids. In depositional landforms the lag is less abundant and contains more pisoids. Deflation by sheetwash may lead to lag being partially buried by alluvium. In a large proportion of pisoid lag, hematite and goethite have been converted to maghemite, allowing ready separation into magnetic and non-magnetic fractions. The non-magnetic fraction is dominated by the lithic lag whereas the magnetic fraction is dominated by pisoid lag.The magnetic and non-magnetic components of the 2–11 mm lag fraction, milled to < 75 μm and subjected to HF-HNO3-HClO4 attack, give rise to distinct geochemical patterns at targets related to a variant of the Cobar style of Pb-Zn mineralization with variable silicification and to Zn mineralization in a swarm of quartz and carbonate veinlets. The patterns are influenced by metal source, lag type, surface chemical conditions and landtbrm. Differences in the correlation between metal contents in the magnetic and non-magnetic lag components, and between trace elements and Fe. indicate variable loss of Cu and Zn from the magnetic lag at some targets but retention of Pb. The presence of a readily cxtractable base metal component in the lag has implications for detecting anomalies in transported cover in the region.  相似文献   

2.
应用矿物磁测技术和X射线衍射研究氧化土中的磁性矿物   总被引:3,自引:2,他引:1  
卢升高  吕光烈 《矿物学报》1999,19(3):279-285
应用矿物磁测、X射线衍射和化学分析对氧化土的磁性矿物进行了研究。结果表明矿物磁测及磁分离技术与X射线衍射结合是鉴别土壤中磁性矿物的类型及其晶粒特征的有效方法,证明氧化土中的主要氧化铁矿物是赤铁矿和磁赤铁矿,针铁矿次之,磁铁矿偶见,其磁赤铁矿的含量可达1.62% ̄1.92%。土壤中磁性矿物的晶粒特征多以超顺磁性和稳定单畴态存在,认为磁性矿物的成因是通过缓慢的成土化学作用产生的。  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(23-24):3939-3957
A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the “Haut–Mbomou” area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H+ permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe–oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut–Mbomou area may result from different stages of weathering and erosion during climatic changes.  相似文献   

4.
A study of the pattern of dissolution of synthetic and natural Fe oxides in 6 M HCl indicates that the rate of element release from synthetic Fe oxides is strongly influenced by mineralogy and the level of element incorporation. Synthetic maghemite (γ-Fe2O3) samples are subject to much more rapid dissolution than goethite (FeOOH) and hematite (α-Fe2O3). In samples dominated by hematite and maghemite, Cu, Zn and particularly Pb, in comparison to Fe, are preferentially released during the early stages of dissolution. Similar patterns are apparent from the dissolution of hematite- and maghemite-dominated samples derived from natural gossan. Comparison of XRD scans with data from the dissolution of natural gossan samples transformed by incremental heating to hematite- and maghemite-dominated assemblages suggests that the degree of crystallinity may also be a significant factor in the release of elements incorporated in the Fe oxides. Ferruginous materials made up of varying proportions of goethite, hematite, maghemite, kaolinite and quartz are important sampling materials in a range of regolith environments. These are products of complex chemical and mechanical mobilization over long periods of geological time. If the patterns of Fe oxide dissolution in 6 M HCl and the release of incorporated metals reflect stability in such weathering regimes, knowledge of the retention characteristics of incorporated metals in different Fe oxide phases, as indicated by this study, will be useful in the planning and interpretation of geochemical surveys in such regions.  相似文献   

5.
碳酸盐岩红色风化壳中的氧化铁矿物   总被引:6,自引:0,他引:6       下载免费PDF全文
朱立军  李景阳 《地质科学》2001,36(4):395-401
氧化铁矿物是碳酸盐岩红色风化壳的主要矿物成分和重要结构单元。运用X射线衍射、透射电镜、扫描电镜、穆斯堡尔谱和电子探针等方法对碳酸盐岩红色风化壳中的氧化铁矿物进行了系统研究。碳酸盐岩红色风化壳中的氧化铁矿物主要有针铁矿、赤铁矿和磁赤铁矿。氧化铁矿物组合、含量和化学成分随成土环境和风化强度在剖面中呈明显的规律性变化,这为碳酸盐岩风化成土作用、红色风化壳成因与环境问题的深入研究提供了重要的矿物学依据。  相似文献   

6.
The stream sediments of Dahab area, southeastern Sinai, Egypt, were studied for their content of economic minerals. These sediments are immature as indicated by poor sorting and other mechanical parameters. They are derived from Precambrian basement rocks, which are mostly represented by granitic rocks in addition to lesser amounts of volcanics and gabbros. The mineralogical investigation revealed that these sediments contain considerable amounts of placer gold, Fe–Ti oxides and zircon.The concentrated Fe–Ti oxides comprise homogeneous magnetite and ilmenite in addition to ilmeno-magnetite, hemo-ilmenite and rutile–hematite intergrowths. Isodynamic separation of some raw samples of SIZE=1 mm revealed that up to 15.12% magnetic minerals can be recovered. Zircon shows remarkable variations in morphology, colour, chemistry and provenance. U-poor and U-rich varieties of zircon were discriminated containing UO2 in the ranges of 0.04–1.19 and 3.05–3.68 wt.%, respectively. REE-bearing minerals comprise monazite, allanite and La-cerianite.On mineralogical basis, the present work suggests that Dahab stream sediments represent a promising target for further geochemical exploration for precious metals, especially gold. Fire assay data indicate that placer gold in the studied sediments sometimes reaches 15.34 g/t. Narrow gullies and valleys cutting the basement manifest the development and preservation of gold in this arid environment. Background concentration of gold and variation in lithology suggest multiple source of the metal in the investigated sediments.  相似文献   

7.
The Rio Tinto in SW Spain drains Cu and pyrite mines which have been in operation since at least the Bronze Age. Extensive metal mining, especially from 1873 to 1954, has resulted in contamination of the Rio Tinto alluvium with As, Cu, Pb, Ag and Zn. X-ray diffraction (XRD), wavelength-dispersive X-ray mapping, scanning electron microscope petrography and X-ray energy-dispersive (EDX) analysis has revealed that 4 major groups of contaminant metal and As-bearing minerals, including sulphides, Fe-As oxides, Fe oxides/hydroxides/oxyhydroxides, and Fe oxyhydroxysulphates, occur in the alluvium. Sulphide minerals, including pyrite, chalcopyrite, arsenopyrite and sphalerite, occur in alluvium near the mining areas. Iron hydroxides and oxyhydroxides such as goethite and possibly ferrihydrite occur in cements in both the mining areas and alluvium downstream, and carry minor amounts of As, Cu and Zn. Iron oxyhydroxysulphates, including jarosite, plumbojarosite and possibly schwertmannite, are the most common minerals in alluvium downstream of the mining areas, and are major hosts of Cu, Pb, Zn and of As, next to the Fe-As minerals. This work, and other field observations, suggest that (1) the extreme acidity and elevated metal concentrations of the river water will probably be maintained for some time due to oxidation of pyrite and other sulphides in the alluvium and mine-waste tips, and from formation of secondary oxide and oxyhydroxysulphates; (2) soluble Fe oxyhydroxysulphates such as copiapite, which form on the alluvium, are a temporary store of contaminant metals, but are dissolved during periods of high rainfall or flooding, releasing contaminants to the aqueous system; (3) relatively insoluble Fe oxyhydroxysulphates and hydroxides such as jarosite and goethite may be the major long-term store of alluvial contaminant metals; and (4) raising river pH will probably cause precipitation of Fe oxyhydroxides and oxides/hydroxides/oxyhydroxides and thus have a positive effect on water quality, but this action may destabilise some of these contaminant metal-bearing minerals, releasing metals back to the aqueous system.  相似文献   

8.
Located in northeast Scotland, the Lecht manganiferous ironstone occurs as several minor and one principal outcrop within deeply weathered Dalradian meta-sediments. The distribution of these shows is controlled primarily by an underlying porous breccia pipe and not by Dalradian stratigraphy or faulting, as previously suggested. The deposit is composed principally of goethite and cryptomelane, with minor hematite, ramsdellite, pyrolusite, lithiophorite, chalcophanite and woodruffite. The ironstone is enriched in several target and pathfinder elements, particularly Zn and Ba which are primarily concentrated in the manganese oxides. Detailed examination of the geochemistry demonstrates that the enrichments are actually more typical of non-economic ironstones (particularly bog-ore) than gossans (a conclusion supported by field, textural and mineralogical evidence), illustrating the danger of relying upon simple geochemical surveys alone for ironstone-gossan discrimination. No relict sulphides, secondary ore minerals, native metals, gangue minerals or “boxwork” textures were observed in either hand specimen or polished section. The morphology and textures of the Lecht ironstone are typical of those observed in bog-iron ores and in weathered profiles.The Lecht ironstone is considered to have been derived from prolonged weathering of the local Dalradian meta-sediments. These are enriched in target and pathfinder elements and are regarded as a prospective sequence. Cementation of the subsequent regolith by solutions rich in iron, manganese and other elements, combined with bog-ore formation and penetration of the breccia pipe by these solutions, produced the complex and varied morphology and geochemistry seen in the deposit today. The Lecht deposit may represent the distal manganiferous expression of a goldrich zinc-lead exhalative deposit hosted by the Dalradian meta-sediments of the region.  相似文献   

9.
东太平洋海盆内多金属结核中的铁矿物萧绪琦郭立鹤(中国地质科学院矿床地质研究所,北京100037)1前言早在五十年代人们就已注意到,大洋多金属结核含铁量较高,由于结核中矿物颗粒细小,结晶程度低,使得铁矿物的确定很困难,通常称之为铁的氧化物和氢氧化物。在...  相似文献   

10.
Vast parts of the Australian continent are prospective for precious and base metal mineralisation, but exploration is hindered by extensive cover of often deeply reaching regolith. New operational exploration methods are required that can help to characterise the cover and provide information about bedrock signatures. This paper shows how mineral mapping information from a combination of satellite multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and drill core hyperspectral profiling data (HyLogging™) can be used to unravel the regolith stratigraphy and to describe regional variations of regolith landforms, delivering important information for mineral exploration.The case study is located in the Neale tenements in the northeastern Albany–Fraser Orogen (Western Australia), which is prospective for Tropicana-style gold mineralisation. By interpretation of indicator minerals from hyperspectral drill hole logging data the regolith stratigraphy atop a metamorphic basement, comprising saprock, ferrugineous saprolite, kaolinitic saprolite, silcrete and transported cover, is recorded in cm-detail. Important mineralogical parameters extracted from the hyperspectral subsurface data and validated by XRD and FTIR, are 1) the abundance and type of iron oxides, 2) the abundance and crystallinity of kaolinite, 3) the abundance and composition of primary minerals, such as white mica, and 4) the abundance of quartz.The HyLogging™ data served as ground control points for mineral mapping information provided by CSIRO's ASTER Geoscience Products, which are a collection of mineral maps that highlight variations in the abundance, type or chemistry of selected mineral groups. Key ASTER Geoscience Products for regolith characterisation were the Ferric Oxide and AlOH abundance and composition images. The comparison of the surface with the subsurface data suggests three major different regolith landforms, including erosional, depositional and relict areas, which were used to generate a map showing transported versus relict and erosional areas. Erosional domains were mapped out in great detail, providing important information for exploration in saprolite dominated areas. Furthermore, source areas of transported material could be identified, which may help to understand the distribution of geochemical signatures collected during, for example, geochemical soil sampling projects.  相似文献   

11.
The bauxites deposits of Kachchh area in Gujarat are investigated to characterize them based on mineralogical and petrographic studies. The major bauxitic mineral in these occurrences is gibbsite, with minor concentration of boehmite and diaspore. Apart from the bauxitic minerals, the other associate minerals are kaolin, calcite, alunite and the iron ore minerals such as hematite and goethite and titanium rich anatase. The iron ore minerals (hematite and goethite) are 10-50microns in size and are disseminated throughout the oolitic and pisolitic bauxitic minerals. At places the goethite exhibits colloform texture. The preservation of basaltic texture in some of the samples indicate that the insitu nature of these bauxites, which are formed by the alteration of calcic plagioclase from the parent basalt. Although, the basalt occurs as the main parent rock for these bauxites, the presence of calcite in some of the samples represent the possibility of having a limestone parent rock at least in some of the bauxite occurrences.  相似文献   

12.
Miocene fluvial goethite/hematite channel iron deposits (CID) are part of the Cenozoic Detritals 2 (CzD2), of the Western Australian Pilbara region. They range from gravelly mudstones through granular rocks to intraformational pebble, cobble and rare boulder conglomerates, as infill in numerous meandering palaeochannels in a mature surface that includes Precambrian granitoids, volcanics, metasediments, BIF and ferruginous Palaeogene valley fill. In the Hamersley Province of the Pilbara, the consolidated fine gravels and subordinate interbedded conglomerates, with their leached equivalents, are a major source of export iron ore. This granular ore typically comprises pedogenically derived pelletoids comprising hematite nuclei and goethite cortices (ooids and lesser pisoids), with abundant coarser goethitised wood/charcoal fragments and goethitic peloids, minor clay, and generally minimal porous goethitic matrix, with late-stage episodic solution and partial infill by secondary goethite, silica and siderite (now oxidised) in places. Clay horizons and non-ore polymictic basal and marginal conglomerates are also present. The accretionary pedogenic pelletoids were mostly derived from stripping of a mature ferruginous but apparently well-vegetated surface, developed in the Early to Middle Miocene on a wide variety of susceptible rock types including BIF, basic intrusives and sediments. This deep ferruginisation effectively destroyed most remnants of the original rock textures producing a unique surface, very different to those that produced the underlying CzD1 (Palaeogene) and the overlying CzD3 (Pliocene – Quaternary). The peloids were derived both intraformationally from fragmentation and reworking of desiccated goethite-rich muds, and from the regolith. Tiny wood/charcoal fragments replaced in soil by goethite, and dehydrated to hematite, formed nuclei for many pelletoids. Additionally, abundant small (≤10 mm) fragments of wood/charcoal, now goethite, were probably replaced in situ within the consolidating CID. This profusion of fossil wood, both as pelletoid nuclei and as discrete fragments, suggests major episodic wild fires in heavily vegetated catchments, a point supported by the abundance of kenomagnetite – maghemite developed from goethite in the pelletoids, but less commonly in the peloids. The matrix to the heterogeneous colluvial and intraformational components is essentially goethite, primarily derived from modified chemically precipitated iron hydroxyoxides, resulting from leaching of iron-rich soils in an organic environment, together with goethitic soil-derived alluvial material. Major variations in the granular ore CID after deposition have resulted from intermittent groundwater flow in the channels causing dissolution and reprecipitation of goethite and silica, particularly in the basal CID zones, with surface weathering of eroded exposures playing a role in masking some of these effects. However, significant variations in rock types in both the general CID and the granular ore CID have also resulted from the effects of varied provenance.  相似文献   

13.
The Nkout deposit is part of an emerging iron ore province in West and Central Africa. The deposit is an oxide facies iron formation comprising fresh magnetite banded iron formation (BIF) at depth, which weathers and oxidises towards the surface forming caps of high grade hematite/martite–goethite ores. The mineral species, compositions, mineral associations, and liberation have been studied using automated mineralogy (QEMSCAN®) combined with whole rock geochemistry, mineral chemistry and mineralogical techniques. Drill cores (saprolitic, lateritic, BIF), grab and outcrop samples were studied and divided into 4 main groups based on whole rock Fe content and a weathering index. The groups are; enriched material (EM), weathered magnetite itabirite (WMI), transitional magnetite itabirite (TMI) and magnetite itabirite (MI). The main iron minerals are the iron oxides (magnetite, hematite, and goethite) and chamosite. The iron oxides are closely associated in the high grade cap and liberation of them individually is poor. Liberation increases when they are grouped together as iron oxides. Chamosite significantly lowers the liberation of the iron oxides. Automated mineralogy by QEMSCAN® (or other similar techniques) can distinguish between Fe oxides if set up and calibrated carefully using the backscattered electron signal. Electron beam techniques have the advantage over other quantitative mineralogy techniques of being able to determine mineral chemical variants of ore and gangue minerals, although reflected light optical microscopy remains the most sensitive method of distinguishing closely related iron oxide minerals. Both optical and electron beam automated mineralogical methods have distinct advantages over quantitative XRD in that they can determine mineral associations, liberation, amorphous phases and trace phases.  相似文献   

14.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

15.
At the Justice mine, in the Ashanti goldfields of southwestern Ghana, chemical weathering of gold- bearing sulfide-rich lodes has produced a series of characteristic mineralogical and geochemical features that are diagnostic. In this type of gold mineralization, the most abundant sulfides are arsenopyrite, pyrite, pyrrhotite, and chalcopyrite with minor bornite and sphalerite. Gold occurs predominantly as native gold, spatially associated and chemically bound with arsenopyrite. Elsewhere gold-silver tellurides are present in quartz veins. During sulfide oxidation, arsenopyrite is replaced by amorphous and crystalline Fe-Mn arsenates, goethite, hematite, and arsenolite in box- and ladderwork textures. In the extremely weathered gossans exposed at surface or in exploration pits, goethite, hematite, and scorodite are present as pseudomorphs of oxidized arsenopyrite, which can be used as a visual pathfinder for gold-arsenic mineralization. As with arsenopyrite, pyrite and pyrrhotite alteration produces boxwork and ladderwork textures with the sulfide replaced by goethite, hematite, and a complex limonite. Copper sulfides and goethite replace bornite and chalcopyrite in ladder-type textures. With more intensive weathering, this assemblage is replaced by cuprite, goethite, and hematite. Gold mineralogy in the gossan is complex, with evidence of in situ precipitation of supergene gold as well as alteration of hypogene native gold. The concentration of pathfinder elements decreases in the gossan as a result of supergene leaching. Mass- balance calculations confirm that gossan production largely is in situ and, consequently, the hypogene geochemical dispersion patterns are preserved even though the proportion of many elements decreases as intensity of weathering increases.

The problem remains of discriminating between auriferous and non-auriferous gossans, or those produced by pedological concentration of iron. Although mineral textures such as box-and ladderwork replacement and mineral pseudomorphs are useful field criteria, the most reliable guide for evaluation still is trace-element geochemistry. By use of multi-element discriminant analysis, gossans of different origins can be distinguished (along with their surface expression) from ironstones and barren lateritic soils. In regional reconnaissance studies, the evaluation of trace-element geochemistry as a discriminant along with field mapping may indicate gold potential of even extremely altered products of mineralization and, in so doing, provide a basis for the classification of weathered samples.  相似文献   

16.
Two weathering profiles developed over disseminated Cu mineralization hosted by granodiorites (porphyry type) and felsic volcanics respectively, in a savannah tropical environment (Burkina Faso) have been studied in detail. A mineralogical and geochemical study was carried out in order to determine the characteristics of both profiles and the behaviour of Cu in such deeply weathered environments. Our investigation was focused on the upper part of the weathering profile, respectively 4.0 and 10.5 m below the surface.The mineralogical study reveals that in the first case (profile A) the predominant clay minerals are smectites and kaolinite while in the second (profile B) a more kaolinitic composition is indicative of more severe leaching. In fact, field observations seem to demonstrate that the latter situation is more clearly related to an ancient lateritic-type weathering while the first one results from more recent processes.In both cases the Cu contents through the profiles are high (several thousands of ppm) and in good agreement with the grades obtained in depth, in the mineralized rock. Nevertheless, some leaching can be observed in the upper soil horizons, but the contents still remain highly anomalous, in the 1000 ppm range.It is shown that Cu is distributed in the main secondary minerals constituting the weathering products, whether they are silicates (smectites, phyllites, kaolinites) or oxides (goethite, hematite, Mn oxides).The main stable Cu-bearing mineral seems to be the kaolinite: indeed, smectites turn into kaolinite in the upper part of the profiles while goethite seems to be depleted in Cu under the same conditions.As concerns geochemical exploration, two observations can be noted. Firstly, Cu is very stable in such supergene environments, and secondly, the best size fraction in which to detect the Cu secondary dispersion haloes in soil or stream sediment samples is the <63 μ fraction, in terms of anomaly intensity or contrast.  相似文献   

17.
The present work deals with the geology, mineralogy, geochemistry, and origin of the metagabbroic-hosted manganese deposits at Wadi Maliek in the southern Eastern Desert of Egypt. The manganese veins are found in the shear zones and channel ways of the fault planes within the metagabbroic rocks pointing to those hydrothermal solutions carrying manganese and iron load penetrating along these fractures. These faults are striking N 80° E?CS 80° W with dipping 65°. These veins vary in thickness from 15?cm up to 125?cm wide; each vein may show difference in thickness from bottom to top. Microscopic examinations, X-ray diffraction, infrared spectral, differential thermal (DTA), thermogravimetric (TGA), and ESEM-EDAX analyses revealed that the manganese minerals consist mainly of pyrolusite, psilomelane, and ramsdellite. Goethite and hematite are the common iron minerals. Petrographically, the manganese deposits can be classified into three ore types based on the predominance of manganese and iron minerals: manganese, manganese?Ciron, and iron ore types. The geochemistry of Maliek deposits indicated that the total averages of some major oxides in manganese, manganese?Ciron, and iron ore types are respectively as follows: SiO2 (15.64%, 11.52%, and 20.58%), MnO (39.9%, 17.81%, and 0.77%), FeO* (7.13%, 33.31%, and 37.08%), CaO (5.89%, 5.82%, and 5.32%), and Na2O (1.04%, 1.61%, and 1.53%). With regard to trace elements, the Maliek manganese deposits are rich in Zn, Ba, Pb, Sr, and V. Based on the geological, mineralogical, and geochemical results, the studied manganese deposits are considered to be precipitated from hydrothermal solution.  相似文献   

18.
In parts of the deeply weathered and semi-arid environments of the Cobar area (NSW, Australia), detection of mineralisation using conventional soil sampling and total metal analysis is impeded. This is due to the intense leaching of trace elements within the weathered profile, discontinuous coverage of transported materials and the existence of diffuse regional geochemical anomalies of ill-defined source. Selective chemical extractions, applied to various regolith components, and biogeochemistry offer a means of isolating localised geochemical patterns related to recent dispersion of trace elements through the overburden. Lag geochemical patterns across the McKinnons deposit (Au) and Mrangelli prospect (Pb–Zn–As) reflect mechanical dispersion processes and minor hydromorphic effects. Concentrations of more mobile elements tend to be higher in the non-magnetic fraction, due to higher proportions of goethite and poorly crystalline hematite than in the magnetic fraction. The subdued soil geochemical responses for metals extractable by cold 40% hydrochloric acid (CHX) and for total element concentration reflect the leached nature of the residual profile, low grade of mineralisation, dilution by aeolian components and disequilibrium of fine fractions with coarser, relict Fe-oxides. The stronger contrast for CHX for most metals, compared with total extraction, indicates surface accumulation of trace elements derived from underlying mineralisation. Enzyme leach element anomalies are intense but generally located directly over bedrock sources or major structural breaks, irrespective of the nature of the overburden. Though mechanisms for the dispersion of trace elements extracted by enzyme leaching are not well established, the lack of lateral transport suggests vertical migration of volatile metal species (atmimorphic dispersion). The strong, multi-element response to mineralisation in cypress pine needles indicates significant metal recycling during the present erosional cycle. However, a comparison of the trace element concentrations in vegetation (cypress pine needles) and selective extractions of soils indicates that recycling by the plants is not the dominant mechanism for transportation of metals through the overburden. The vegetation may be responding to hydromorphic dispersion patterns at depth. The use of selective extractions may be useful in detecting mineralisation through deeply leached profiles, but offers even greater potential when integrated with biogeochemistry to detect targets buried by significant thickness of transported cover.  相似文献   

19.
The ironstone succession at El Gedida-Ghorabi-Naser area of El Bahariya depression is subdivided into lagoonal manganiferous mud and fossiliferous ironstone consisting mainly of hematite and goethite-hydrogoethite. The application of the ASD field spectroradiometer measurements (spectral range) in the ASTER data led to the interpretation of the presence of ferruginous units as quartzitic sandstone, gluconitic sandy clay, and pink marly limestone. The existing iron ore minerals in the iron ore localities were also classified into high Mn hematite, low Mn hematite, goethite, hydrogoethite as well as low- and high-grade Hematite and Barite. Quartz, feldspars, rutile, and clay minerals (e.g., kaolinite and illite) are mainly associated with the iron ore. Accessory minerals of manganese, e.g., psilomelane and pyrolusite, were also present. The Barite mineral is recorded as a common mineral association with the iron ore deposits at El Gedida and Ghorabi localities. The stratigraphical units investigated in the study area include the oldest gravely clayey sandstones of the Bahariya Formation overlain by the fossiliferous and oolitic limestones of the El-Hamra, Qazzun, and Naqb Formations. Quartztic sandstones and clayey sandstones of the Radwan Formation and youngest Quaternary sediments of sandy-clayey materials were often found as intermittent cover and overburden in unconformity surfaces over the iron ore bands.  相似文献   

20.
Bauxite within the laterite horizon was first identified as being of economic significance in the Mt. Saddleback area of Western Australia in the 1960's. The Mt. Saddleback bauxite is derived from a mafic volcanic (greenstone) parent material and has high Fe and low silica contents compared with other bauxite in the region. It occurs as two distinct lithological units, a hard, massive, Fe-rich layer (hardcap) overlying a more friable, nodular earthy horizon (B zone). The bauxite averages 6 m in thickness and is underlain by a deep clay horizon. The major minerals of the bauxite are gibbsite, goethite and hematite with kaolin increasing with depth towards the base of the B zone. Minor components are quartz and anatase with traces of corundum, boehmite and maghemite in hardcap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号