首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototrophic mats (microbial mats with a phototrophic top layer) are complex systems in terms of microbial diversity, biogeochemical cycles and organic matter (OM) turnover. It has been proposed that these mats were a predominant life form in Proterozoic shallow water settings, prior to the emergence of bioturbating organisms in the Ediacaran–Cambrian transition. For most of the Precambrian, microbial mats were not only quantitative important carbon fixing systems, but also influenced the transfer and transformation of OM before it entered the geosphere. The profound alteration of compound inventories during transit through microbial mats, implying substantial consequences for OM preservation in the Proterozoic, was recently proposed as a “mat-seal effect” [Pawlowska et al. (2012) Geology 41, 103–106]. To obtain a better understanding of the early diagenetic fate of primary produced OM in microbial mats, we studied a recent calcifying mat from a hypersaline lake in Kiritimati, which showed in the deeper mat layers a maximum 14Ccarbonate age of ∼1500 years. We particularly focused on OM entrapped in the carbonate matrix, because of the better potential of such biomineral-encapsulated OM to reach the geosphere before degradation (and remineralization). Our data indicate that selective preservation is important in phototrophic mats. While a diagenetic transformation of lipid fatty acids (FAs) was evident, their fatty acyl-derived hydrocarbon moieties were not introduced into protokerogen, which was instead mainly comprised of cyanobacterial and/or algal biomacromolecules. Our data support the proposed major impact of the “mat-seal effect” on OM turnover and preservation; i.e. the suppression of biosignatures derived from the upper mat layers, while signals of heterotrophic microbes thriving in deeper mat layers become preferentially preserved (e.g. high hopane/sterane ratios). This mechanism may have broad consequences for the interpretation of biomarkers from Proterozoic shelf environments, because biosignatures of phototrophic mat dwellers as well as planktonic signals may have become heavily biased by the production and turnover of OM in microbial mat systems.  相似文献   

2.
As a contribution to a project on the role of aerobic heterotrophic bacteria in the organic matter turnover within cyanobacterial mats, we investigated selected lipid classes of five morphologically different microbial mats from the intertidal area of Abu Dhabi, United Arab Emirates. The mats thrive under extreme environmental conditions as they are exposed to salinity up to 200 and shadowless sunshine for nearly 12 h per day. The total extractable organic matter is characterised by heavy δ13C values of −17‰ to −10‰, suggesting CO2 limitation. The lipids reflect the biomass of the principal mat-building phototrophic and heterotrophic microorganisms. Moderate amounts of hydrocarbons, mainly cyanobacterial n-heptadecane, short chain monomethyl alkanes and diploptene were detected in all the mats. The ubiquitous n-hexadecanoic acid is dominant amongst the free and ester-bound phospholipid fatty acids (PLFAs), whereas the overall acid composition varies due to differences in the extreme environmental conditions. Additionally, the top layers of two of the five mats were analysed separately to compare their lipid compositions with those of the whole mats. As would be expected, the concentrations of cyanobacterial biomarkers exceed those found in the total mats. Noteworthy is the presence of n-heneicosadiene as predominant hydrocarbon in the top layer of the so called gelatinous mat, which thrives under the locally most extreme conditions. As the n-alkadiene was present to a much lesser extent in the intact mat, it may provide a new biomarker for a so far unknown important aerobic organism.  相似文献   

3.
Carbon and oxygen isotope data from Cenomanian–Turonian sediments from the southwest of the Crimea are presented. The sediments consist of limestones, marls and organic-rich claystones, the latter with total organic carbon values up to 2.6 wt. %, representing Oceanic Anoxic Event 2. A shift to more negative δ18O values through the uppermost Cenomanian into the lowermost Turonian may be the result of warming; however, petrographic analysis shows that the samples have undergone a degree of diagenetic alteration. The carbon isotope data reveal a positive excursion from 2.7‰ to a peak of 4.3‰ at the Cenomanian/Turonian boundary; values then decrease in the early Turonian. This excursion is comparable to those of other Cenomanian–Turonian sections, such as those seen in the Anglo-Paris Basin, and is thought to be due to global changes in the oceanic carbon reservoir. On this curve are a number of negative δ13C excursions, just below the Cenomanian/Turonian boundary. It is suggested that these negative excursions are associated with the uptake of light carbon derived from the oxidation and deterioration of organic material during localised exposure of the sediments to oxic or meteoric diagenetic conditions, possibly during sea-level fluctuations.  相似文献   

4.
A systematic study of the lipid composition of thirteen bacterial species and three Recent sediments (methanogenic sediment, cyanobacterial mat and evaporative gypsum crust) was undertaken in an attempt to recognize bacterial organic matter in sediments. A sequential method, which distinguishes between three different modes of occurrence of lipid moieties (free, OH- and H+-labile), was applied. The acid-labile fractions are discussed.The three main groups of bacteria, archaebacteria, gram-positive eubacteria and gram-negative eubacteria, are easily distinguished. Methanogenic and extremely halophilic archaebacteria are characterized by the presence of diphytanyl glyceryl ether and the absence of fatty acids. The gram-positive eubacteria contain primarily iso- and anteiso-branched fatty acids whereas the gram-negative bacteria and sediments are dominated by β- and α-hydroxy fatty acids. A wide variety of H+-labile hydroxy fatty acids was observed which included several, as yet unknown, structures.β-Hydroxy fatty acids in this H+-labile mode of occurrence are exclusively present in bacteria. Their distribution patterns in sediments are considered “fingerprints” of past and present bacterial populations. The specific differences in β -hydroxy fatty acid compositions observed in the different bacteria and the three sediments investigated, suggest that amide-linked β-hydroxy fatty acid patterns are useful as markers of bacterial populations and therefore of environmental conditions.  相似文献   

5.
Clay mineralogy and whole-rock stable isotopes (δ18O and δ13C) of Upper Cretaceous marly sediments on the Basque-Cantabrian Basin have been integrated to determine the main effects of diagenesis, palaeoclimate and tectono-sedimentary factors in sections belonging to deep- (Barrika) and platform-marine (Isla de Castro, Villamartín and Olazagutía) settings.The mean values for the clay assemblages and δ18O exhibit notable differences among the sections, partially explainable by the influence of diagenesis. The Barrika sediments, with more diagenetically advanced illite-smectite (I-S) mixed-layer (R1, 70% illite), authigenic chlorite, and low δ18O (−4.05‰ PDB), experienced higher diagenetic grade than Isla de Castro and Olazagutía, which have R0 I-S (20% illite) and heavier δ18O. Villamartín was also affected by higher diagenesis than Isla de Castro and Olazagutía, given the occurrence of R1 I-S (60% illite) and low δ18O (−4.11‰ PDB). However, the absence of other clays in Villamartín (e.g. authigenic chlorite) is indicative of less diagenetic grade than Barrika. These results show the useful integration of clay mineralogy and stable isotopes to detect different diagenetic grades in distinct marine successions of the same basin.Despite being influenced by diagenesis, the clay mineralogy partially preserves its inherited signature. This allows detection of major contents of I-S and mica, and minor kaolinite, interpreted as indicative of warm palaeoclimatic conditions. High kaolinite content in Villamartín and absence of kaolinite in Isla de Castro, though, are considered to be a product of neither diagenesis nor palaeoclimatic influences. Instead, tectono-sedimentary causes, related to unsuitable conditions for clay formation and transport from the local source areas, contributed to original clay differences. The inferred effects of diagenesis, palaeoclimate and tectono-sedimentary factors make this work important to show the potentially great variety of controls on the clay mineralogy of marine sections, which are often uncritically treated in studies concerning the Late Cretaceous.  相似文献   

6.
The Ilam Formation (Santonian–Campanian in age), part of the Bangestan Group, is disconformably overlain by the Sarvak Formation and underlain by the Gurpi Formation in the Tang-E Rashid, Peyon area, Izeh (Zagros), southwest of Iran.Facies analyses indicate that the Ilam carbonates formed in four microfacies belts: tidal flat, lagoon, shoal and open marine, in a platform ramp environment. Major and minor elements and carbon and oxygen isotope values were used to determine the original carbonate mineralogy of the Ilam Formation. Petrographic evidence and elemental and oxygen and carbon isotope values indicate that aragonite was the original carbonate mineralogy in the Ilam Formation. The elemental and isotopic compositions of the Ilam carbonates also illustrate that they have stabilized in the marine phreatic environment. Variations of Sr/Ca and δ18O values versus Mn suggest that diagenetic alteration occurred in a closed system. Temperature calculation based on the oxygen isotope value of the least-altered sample indicates that the very early shallow burial fluid temperature was around 28 °C.Recognition of the exact boundary between the Ilam and Sarvak Formations is difficult, due to similar lithologies and the absence of the Surgah Formation in the study area. However, elemental and oxygen and carbon isotope analysis were used to determine the boundary between these formations. The δ18O and δ13C values, along with elemental results, clearly indicate a subaerial exposure surface, below which meteoric diagenesis affected the sediments.  相似文献   

7.
Petrological data provide evidence that framboidal pyrite, Fe-carbonates and kaolinite are the major diagenetic minerals developed during burial diagenesis in the Tertiary Niger Delta sandstones and associated mudrocks. The pyrite sulphur, carbonate carbon and oxygen and kaolinite oxygen and hydrogen isotope compositions have been determined. These data (pyrite, δ34S = −24.8 to 21.0‰; “siderite”, δ13C(PDB) = −14.7 to +5.0‰, δ18O(PDB) = −19.1 to −0.6‰; Fe-calcite, δ13C(PDB) = +17.5 to 17.9‰, δ18O(PDB) = −8.3 to −8.0‰; kaolinite, δ18O(SMOW) = +14.7 to 17.5‰, δD (SMOW) = −86 to −43‰) have been used to interpret the isotopic compositions of the precipitating pore fluids and/or the temperatures of mineral formation. The interpretation of these results indicate that in the deltaic depositional setting the syndepositional pore waters had a significant but variable marine influence that favoured the early formation of pyrite. Subsequently the subsurface influence of meteoric waters, showing varying degrees of modification involving organic and/or water-rock reactions, played an increasingly significant role in the development of later diagenetic cements in the sediments when abundant authigenic carbonates and kaolinites were formed.  相似文献   

8.
Dolomite [CaMg(CO3)2] is abundant in sedimentary rocks throughout the geological record, but it is rarely found in modern sediments. Also, it cannot be precipitated under low‐temperature conditions in the laboratory without microbial mediation and, as a result, its origin remains a long‐standing enigma. This study reports biologically mediated dolomite precipitation in ancient microbial mats and biofilms from the Cambrian Tarim Basin. The ambient temperature at the time of dolomite precipitation was estimated from δ18O values from early diagenetic dolomite, and the presence of structures associated with extracellular polymeric substances (EPS), is composed of fibres arranged in a reticular pattern, would favour epitaxial crystallization of dolomite on an organic substrate. In addition, poorly crystallized dolomite formed nanocrystal aggregates that strongly resemble the morphology and size distribution observed in microbial culture experiments. These lines of evidence confirm that microbial structures can be preserved in ancient dolomite and validate their use as biosignatures.  相似文献   

9.
A carbonate-hosted stratabound siliceous crust type (SCT) mineralization (base metal sulphides, barite, fluorite) occurs over large areas of Carnic Alps and Karawanken in the Eastern Alps. It concerns a pervasively silicified lithological unit, up to some tens of metres thick, which caps the unconformity landscapes developed on epicontinental Devonian–Dinantian carbonates. The SCT mineralization is directly overlaid by different transgressive siliciclastic sediments, which range from Lower Carboniferous to Lower Permian. The presence of fragments of the SCT mineralization in the transgressive siliciclastic sediment bounds its whole lithological evolution within a short stratigraphic interval of Lower Carboniferous age. Selected features of the regional and lithostratigraphic setting are discussed. The chemical characterisation is based on the statistical evaluation of compositional data of 581 selected samples. Three significant groups of elements have been distinguished: (1) the hydrological and metasomatically active elements (Si, Ba, F), which show a strong negative correlation amongst themselves and characterise the silica-saturated aqueous solutions; (2) the terrigenous elements (Al2O3, K2O, Fetot, TiO2, B, Be, Ce, La, Nb, V, Y, Zr), which suggest a continental margin environment for silica deposition; (3) the sulphide metals (Cu, Pb, Zn, Ni, Sb, As, Hg, Cd), which define the metalliferous signature of the SCT mineralization.Some consistent, but still debatable genetic aspects of the SCT mineralization are as follow: (1) silica may be supplied by illitization of clay-rich basinal sediments during their diagenesis. δ18O of microcrystalline quartz ranges from +18.5‰ and +24.6‰ and is very similar to δ18O of authigenic quartz deriving from diagenetic processes of illitization of clay-rich basinal sequences. (2) The diagenetic evolution of these sediments may trigger off the movement of silica-rich marine pore waters. δ34S of barite ranges from +15.5‰ to +19.3‰ with an average of +17.7‰ and are in good agreement with δ34S of sulphate in ocean waters of Upper Devonian–Lower Carboniferous age. (3) A convective hydrological system, connected with sinsedimentary transtensive tectonics, active in the Carnic Alps since the Frasnian, may be the transport mechanism of aqueous solutions. (4) A weak drop in pH in the dominant carbonate environment represents the conditions for silica precipitation.SCT mineralization, showing persistent, independent and distinct characters, occurs over large areas also in other sites of the Alpine belt and outside Italy and Austria. Therefore, it points to important markers for some sedimentary sequences as well as to a worldwide significant cyclic metallogenic event. It represents a new ore deposit-type within the carbonate-hosted mineralization.  相似文献   

10.
The Platy Dolomite, a carbonate unit in the Zechstein Formation (Upper Permian) of the Leba Elevation, Poland, was deposited in a semi-closed or completely separated back-barrier sabkha environment. This arid, hypersaline zone is comparable to the recent Gavish Sabkha, Sinai. The processes which formed the modern Gavish Sabkha are similar to those responsible for the biolaminoid formation in the Platy Dolomite series. The deposition of this Platy Dolomite was mainly the result of microbial activity building extensive microbial mats. The Platy Dolomite is characterized by loosely packed microbial biolaminoids (a less significantly laminated build-up of biogenetic sediments) with horizontally or obliquely to vertically orientated filaments. Intermediary coated grains occur. Densely packed, flat laminated stromatolitic rocks, pure oolites, and bioclastic sedimentary strata are rarely intercalated with the biolaminoid beds. Laboratory and field investigations indicate that carbonate formation was induced by the chemoorganotrophic bacterial decay of cyanobacterial mats. Magnesium was bound and absorbed by organic matter and later liberated by anaerobic decay. Early diagenetic processes formed Mg2+- and Ca2+-enriched solutions in which carbonates precipitated biologically and chemically. A system of biogenic carbonate formation of the Platy Dolomite microbiolite series is proposed and supported by the results of microbiological laboratory studies.  相似文献   

11.
Two sediment cores of up to 550 cm length from an intertidal flat of the German Wadden Sea near the island of Spiekeroog were investigated for the quantity and composition of fossil organic matter (OM). The lowermost parts of the cores are dominated by grey mud of a salt marsh facies containing mainly terrestrial OM estimated to account for 60–75% of the total OM, based on δ13C values and the ratio of short to long chain n-alkanols. The terrigenous origin of the dominant fraction is indicated, among others, by high proportions of C29 sterols and long chain n-alkanes typical of plant waxes. Coarse shell beds overlying the grey mud at 2–2.5 m depth represent a flooding and erosion event possibly related to heavy storm floods in the Middle Ages. Within the intertidal sand-dominated sediments in the upper parts of the cores total organic carbon (TOC) contents are generally low, ranging from 0.1% to 0.5%, and correlate well with the amount of mud fraction (r2 0.90). At the surface, marine OM has not undergone intense diagenetic alteration and so is the dominant fraction. Eroded peat particles are common throughout most of the sequence and values of the Phragmites peat indicator (PPI) > 5 indicate an origin from reed peat due to a high relative abundance of the n-C24 alkane. Changes in the composition of microbial communities over the depth interval investigated are documented by varying compositions of unsaturated fatty acids with 16 and 18 carbons. Eicosapentaenoic acid (EPA) was detected along the entire cores and indicates the presence of EPA-producing bacterial strains.  相似文献   

12.
Thermal stability of ladderane lipids as determined by hydrous pyrolysis   总被引:1,自引:0,他引:1  
Anaerobic ammonium oxidation (anammox) has been recognized as a major process resulting in loss of fixed inorganic nitrogen in the marine environment. Ladderane lipids, membrane lipids unique to anammox bacteria, have been used as markers for the detection of anammox in marine settings. However, the fate of ladderane lipids after sediment burial and maturation is unknown. In this study, anammox bacterial cell material was artificially matured by hydrous pyrolysis at constant temperatures ranging from 120 to 365 °C for 72 h to study the stability of ladderane lipids during progressive dia- and catagenesis. HPLC-MS/MS analysis revealed that structural alterations of ladderane lipids already occurred at 120 °C. At temperatures >140 °C, ladderane lipids were absent and only more thermally stable products could be detected, i.e., ladderane derivatives in which some of the cyclobutane rings were opened. These diagenetic products of ladderane lipids were still detectable up to temperatures of 260 °C using GC-MS. Thus, ladderane lipids are unlikely to occur in ancient sediments and sedimentary rocks, but specific diagenetic products of ladderane lipids will likely be present in sediments and sedimentary rocks of relatively low maturity (i.e., C31 hopane 22S/(22S + 22R) ratio <0.2 or ββ/(αβ + βα + ββ) ratio of >0.5).  相似文献   

13.
Dolomitic concretions in diatomaceous hemipelagic sediments of the Miocene Pohang Basin in the southwestern East Sea (Sea of Japan) preserve distinct signals of two independent sedimentary processes, which controlled the extents of isotopic compositions. Variable δ18O (−9.1‰ to +0.7‰) and high δ13C (+3.1‰ to +17.9‰) values suggest that the concretions formed in the methanogenic zone with alteration of the residual mid-Miocene seawater by volcanogenic sediments. Remarkable δ18O and δ13C values show a strong linear relationship, indicating that distinctly independent depositional processes operated during the formation of the concretions. The degree of methanogenesis was enhanced during rapid hemipelagic sedimentation of organic-rich particles, resulting in higher δ13C values, and the effect of volcaniclastics was diluted, maintaining the original properties of ambient mid-Miocene seawater. In contrast, lower δ18O and 87Sr/86Sr values characterize the effect of volcaniclastic sediments that were transported by intermittent gravity flows and interacted with mid-Miocene seawater. The input of volcaniclastic sediment probably degraded the role of methanogenesis by lowering the contents of organic matter and thereby decreased the δ13C values within the concretions. Isotopic signals recorded within the concretions highlight understanding of the depositional environment and evolution of the pore-water chemistry.  相似文献   

14.
Series of α, β, ω and (ω-1) hydroxy fatty acids (FAOHs) were determined in several freshwater and brackish water lacustrine sediments in Japan. Analytical procedure used was digestion of the solvent-extracted sediment with HF/HCl followed by solvent and saponification extraction of the residue. Abundances of α/β and ω-FAOH determined by this procedure were 2–3 times higher than those obtained by single alkaline saponification and of the same order with those provided by HCl hydrolysis. Major portion of α/β-FAOH was obtained by solvent extraction of the acid-treated sediments, while subsequent alkaline saponification was needed for the majority of ω-FAOH to be recovered. Thus determined FAOHs comprised 33–61% (Av. = 42%) of the “bound” acid constituents in the lacustrine surface sediments. The α/β and ω-FAOH composition was principally the same among the samples examined, except for relative proportions of the iso to anteiso C15 and C17 ß(α)-FAOH, which showed significant variations in the ranges of 0.30–1.1 and 0.46–1.5, respectively. In the holomictic lakes, the ratios together with the same ratios of the “bound” branched monocarboxylic acids tended to decrease with increasing water depth of the lakes, suggesting that the ratios may indicate an extent of the early diagenetic alteration of the bacteria-derived lipids either in water column or in surface sediment.  相似文献   

15.
Analysis of river, estuary and marine sediments from the Atlantic coast of Spain using thermogravimetry–differential scanning calorimetry–quadrupole mass spectrometry–isotope ratio mass spectrometry (TG–DSC–QMS–IRMS) was used to (a) distinguish bulk chemical hosts for C within a sediment and humic acid fraction, (b) track C pools with differing natural C isotope ratios and (c) observe variation with distance from the coast. This is the first application of such a novel method to the characterisation of organic matter from marine sediments and their corresponding humic acid fractions. Using thermal analysis, a labile, a recalcitrant and a refractory carbon pool can be distinguished. Extracted humic fractions are mainly of recalcitrant nature. The proportion of refractory carbon is greatest in marine sediments and humic acid fractions. Quadrupole mass spectrometry confirmed that the greatest proportion of m/z 44 (CO2) and m/z 18 (H2O) were detected at temperatures associated with recalcitrant carbon (510–540 °C). Isotope analysis detected progressive enrichment in δ13C for the sediment samples with an increase in marine influence. Isotopic heterogeneity in the refractory organic matter in marine sediments could be due to products of anthropogenic origin or natural combustion products. Isotope homogeneity of humic acids confirms the presence of terrigenous C in marine sediments, allowing the terrestrial input to be characterised.  相似文献   

16.
Chemical and isotopic compositions have been measured on 62 microbial gases from Tertiary hemipelagic sediments in the Middle America Trench off Guatemala and from decaying kelp and surf grass currently accumulating in Scripps Submarine Canyon off southern California. Gases from the Middle America Trench have been generated primarily by the reduction of carbon dioxide; methane δ13C varies from −84‰ to −39‰, methane δD varies from −208‰ to −145‰, and carbon dioxide δ13 C varies from −27‰ to +28‰. Gases from Scripps Submarine Canyon have been generated primarily by acetate dissimilation; methane δ13 C varies from −63‰ to −43‰, methane δD varies from −331‰ to −280‰, and carbon dioxide δ13C varies from −17‰ to +3‰.Methane δ13C values as heavy as −40‰ appear to be uncommon for gases produced by carbon dioxide reduction and, in the Middle America Trench, are associated with unusually positive carbon dioxide δ13C values. However, based on the 25‰ intramolecular fractionation between acetate car☐yl carbon and methyl carbon estimated from the Scripps Submarine Canyon data, methane produced by acetate dissimilation may commonly have heavy δ13C values. The δD of methane derived from acetate is more negative than natural methanes from other origins. Microbial methane δD values appear to be controlled primarily by interstitial water δD and by the relative proportions of methane derived from carbon dioxide and acetate.The chemical and isotopic compositions of microbial gas and thermogenic gas overlap, making it difficult to determine the origins of many commercial natural gases from methane δ13C and C2+ hydrocarbon concentrations alone. Measurements of methane δD and carbon dioxide δ13C can provide useful additional information, and together with ethane δ13C data, help identify gases with mixed microbial and thermogenic origins.  相似文献   

17.
In the Pattani Basin, a failed-rift basin, extensive water-rock interaction has occurred between subquartzose alluvial sandstones of Miocene age and their pore fluids. Diagenetic rates and pathways have been strongly influenced by high geothermal gradients, high CO2 fugacities, and low pore water salinities. Depositional pore water was fresh to brackish, depending on the depositional environment of the sediments. Chloride concentrations in modern formation water are believed primarily to reflect the proportions of river and sea water in the depositional environment. However, the concentration of other important solutes and the isotopic composition of the formation waters can not be explained by roportional mixing of these two end-member waters. Dissolution of detrital plagioclase (An = 3) and K- feldspar are reactions of major significance that are reflected chemically in the Na/Cl and K/Cl ratios of the formation water. Despite the high temperature of the sandstones (120–200°C), diagenetic albite does not occur. Geochemical calculations indicate the formation water is undersaturated with respect to both orthoclase and albite. This style of feldspar diagenesis differs significantly from that of sandstones of similar composition in other basins, and has probably influenced other aspects of silicate diagenesis.Important authigenic minerals are: 1. locally abundant calcite cement (δ13C= −12.8, δ18O= −17.3 PDB), an early diagenetic phase that formed at about 60°C; 2. pore-filling kaolinite (δ18O= 9.9, δD= −83.5SMOW) that was closely associated with feldspar dissolution and formed over a range of temperatures; and 3. fibrous pore-lining and pore-bridging illite (δ18O = 9.8, δD = − 86.7 SMOW, the last significant cement, formed at temperatures of 120 to 150°C. Potassium/argon dates on illite indicate that sandstone diagenesis took place during a period of rapid sedimentation in the first two-thirds of the burial history.Comparison of Pattani Basin diagenesis with diagenesis of sandstones of similar age in other sedimentary basins demonstrates that chemical diagenesis, relative to mechanical compaction, has been especially rapid in the Pattani Basin. This reflects the effect of high temperatures on reaction rates. The net effect is a high average rate of porosity loss with burial (11% km).  相似文献   

18.
Organic sulfur in marine sediment is 34S enriched relative to the co-existing pyrite. This phenomenon is still enigmatic. Timing of the sulfur incorporation, immobilization and different sulfur species involved are part of the explanations. The reduced sulfur species incorporation into organic matter (OM) is generally assumed to have negligible δ34S fractionation. This assumption has never been confirmed by laboratory experimental data. The present study measures the δ34S changes resulting from reduced sulfur species (sulfides and polysulfide anions) incorporation into organic model compounds in an aquatic and low temperature (25 °C) system that simulates diagenetic marine environment. In addition, we also investigate the δ34S fractionation and the isotope chemical mixing in the formation of polysulfide anions produced from elemental sulfur and sulfide anions. The results showed total isotope mixing between the two species in the formation of polysulfides. Acidification of the polysulfides solution caused δ34S fractionation between the released elemental sulfur and H2S. The incorporation of polysulfides and sulfides into carbonyl groups, caused 34S enrichment relative to the starting polysulfides and sulfide of 4–5‰. The 34S enrichment of the sulfurized carbonyl groups showed a minimal effect by temperature (0–70 °C) and is not affected by salinity, polysulfides composition, reaction time or solubility in water. The incorporation of polysulfides and sulfides into brominated organic compounds was negligibly 34S enriched. The chemical mechanisms controlling the polysulfides incorporation into OM depend mostly on the functional groups and determine the 34S enrichment of the sulfurized OM. The results presented in this study can explain part of the difference between pyrite δ34S and sulfurized OM δ34S in natural marine sediments.  相似文献   

19.
The molecular structure of an Eocene fossil resin (Vastan, Cambay basin, Western India) has been investigated with complimentary spectroscopic techniques. The FTIR spectrum shows strong aliphatic CH x (3000–2800 and 1460–1450 cm−1) and CH3 (1377 cm−1) absorptions and less intense aromatic C=C (1560–1610 cm−1) absorptions. The major products from analytical pyrolysis are cadalene based bicyclic sesquiterpenoids including some bicadinenes and bicadinanes. The polycadinane products confirm the fossil material as an Angiosperm dammar resin, associated with inputs of tropical rain forests supported by past climates.  相似文献   

20.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号