首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCOUR HOLE CHARACTERISTICS BELOW FREE OVERFALL SPILLWAY   总被引:1,自引:0,他引:1  
1 INTRODUCTION Flow through hydraulic structures often issues in the form of jets. The jet velocities are usually high enough to produce sizable, even dangerous scour hole. The extent of the resulting scour depends on the nature of bed material and flow characteristics. The erosion process is quite complex and depends upon the interaction of hydraulic and morphological factors. Scouring may lead to: endangering the stability of the structure by structural failure or increased seepage, end…  相似文献   

2.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
1 INTRODUCTION'LOcal scour around a pier is a result of the interatiOn amongst the pier, the aPproach flow and theerodible bed. The Presence of a pier results in a stagnation pressure build-up in front of the pier and athree-dimensional tUrbulent flow echaracterized by the downward flow ahead of the pier and the so-called horseshoe vortex along the base of the Pier forms itself The flow modifies the erothe bed inthe vicinity of the pier when local scour takes place (Graf and AJhnakar l…  相似文献   

4.
The flow pattern around a cylinder, installed in a scoured channel bed, was experimentally investigated. Detailed measurements of the instantaneous 3D velocities were performed by using an Acoustic Doppler Velocity Profiler (ADVP), from which the profiles of the time-averaged velocities and turbulence stresses were obtained. It is shown that the influence of the cylinder and of the scour hole alters the approach flow; this is essentially confined to the vicinity of the cylinder and to the inside of the scour hole. The horseshoe vortex is measured as a flow reversal inside the scour hole, formed by the downward flow along the cylinder face and the reversed flow at the scour bed.  相似文献   

5.
The effects of different submerged obstacle longitudinal bars with different arrangement densities on the flow profile and morphology of a scour hole were investigated under clear water conditions. Acoustic Doppler velocimetry(ADV) data were applied to plot the vertical distributions of three-dimensional velocities and turbulent contours.The experimental results indicate that arrangement density(also can represent porosity),structural material(flexible or solid),and the sidewall effect are the main factors impacting turbulent kinetic energy and the morphology of scour holes.For flexible vegetation,the maximum turbulent kinetic energy near the bed surface increased with the arrangement density.For the same structure,the depth and the magnitude of the lateral expansion of the scour hole also increased with the arrangement density.The flexible vegetation reduced the depth of the scour hole because of deflection and arrangement density.The larger volumes of scour found in the upstream and middle sections of solid structures compare well to those in flexible vegetation.The deflection of porous flexible vegetation transported the turbulent kinetic energy downstream,reduced the turbulent kinetic energy near the sediment bed,and increased the stability of the bars.Flexible vegetation bars are able to protect the bank and the bed of a river under normal conditions,making them a good alternative design in the management and restoration of rivers.  相似文献   

6.
Experimental study has been carried out under a clear-water scour condition to explore the local scour around semi-elliptical model bridge abutments with armor-layer bed, compared with the local scour process around semi-circular abutment. Two types of model bridge abutments, namely semi-elliptical and semi-circular abutments have been used in this experimental study. The model abutments had a ratio of streamwise length of abutment to the length of abutment transverse to the flow of 2 for semi-circular abutments and 3 for semi-elliptical abutments. In total, 50 Experiments have been designed and conducted under different flow conditions such as bed shear velocities, flow depth, and dimensions of bridge abutment model, as well as grain size of the bed material. Based on these experiments, the scour process around bridge abutments has been assessed. The dependence of the equilibrium scour depth of the scour hole on hydraulic variables has been studied. Empirical equation describing the equilibrium scour depth of the scour hole around bridge abutments has been developed.  相似文献   

7.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   

9.
1 INTRODUCTION In alluvial streams bed scour often occurs if the sediment load is less than the transport capacity of the flow. Two types of scour are identified, namely local scour and channel bed scour. Channel bed scour can be further classified accord…  相似文献   

10.
Obstacle marks are instream bedforms, typically composed of an upstream frontal scour hole and a downstream sediment accumulation in the vicinity of an obstacle. Local scouring at infrastructure (e.g. bridge piers) is a well-studied phenomenon in hydraulic engineering, while less attention is given to the time-dependent evolution of frontal scour holes at instream boulders and their geometric relations (depth to width, and length ratio). Furthermore, a comparison between laboratory studies and field observations is rare. Therefore, the morphodynamic importance of such scour features to fluvial sediment transport and morphological change is largely unknown. In this study, obstacle marks at boulder-like obstructions were physically modelled in 30 unscaled process-focused flume experiments (runtime per experiment ≥ 5760 min) at a range of flows (subcritical, clear-water conditions, emergent and submerged water levels) and boundary conditions designed to represent the field setting (i.e. obstacle tilting, and limited thickness of the alluvial layer). Additionally, geometries of scour holes at 90 in-situ boulders (diameter ≥ 1 m) located in a 50-km segment of the Colorado River in Marble Canyon (AZ) were measured from a 1 m-resolution digital elevation model. Flume experiments reveal similar evolution of local scouring, irrespective of hydraulic conditions, controlled by the scour incision, whereas the thickness of the alluvial layer and obstacle tilting into the evolving frontal scour hole limit incision. Three temporal evolution phases—(1) rapid incision, (2) decreasing incision, and (3) scour widening—are identified based on statistical analysis of spatiotemporal bed elevation time series. A quantitative model is presented that mechanistically predicts enlargement in local scour length and width based on (1) scour depth, (2) the inclination of scour slopes, and (3) the planform area of the frontal scour hole bottom. The comparison of field observations and laboratory results demonstrates scale invariance of geometry, which implies similitude of processes and form rather than equifinality.  相似文献   

11.
The current study aims to investigate the characteristics of scour topography around High-Rise Structure Foundations(HRSFs)via physical modeling tests.Clear-water scour tests with a uniform non-cohesive bed are modeled under the action of unidirectional steady flows.Time variations of the erosion and deposition topography are measured.The results show that deposition downstream of the first dune behind the HRSF is not located on the centerline of the wake.The deposition pattern indicates that a long steady wake region exists behind the permeable foundation.The scour depth around an HRSF is much less than that around a monopile because of the structural permeability,which gives rise to the bleed flow and a weakened downflow and horseshoe vortex.Additionally,the asymmetry of the HRSF affects the scour rate but not the final equilibrium scour depth.The average scour slope decreases along the direction of the flow.On the contrary,the scour radial distance increases along the direction of the flow,with the average value changing from 1.36De to 2.35De(where De is the equivalent diameter of the foundation).Furthermore,the scour hole around the HRSF is serrated rather than smooth owing to the presence of multiple piles.Empirical formulae are suggested for estimating the evolution of scour depth and volume.These laboratory experiments provide reference information for relevant numerical modeling studies and can be applied to guide engineering designs in an ocean area.  相似文献   

12.
In this work, investigation on the development of local scour around an oblong pier in a 180 degree flume bend is presented. Scour hole can cause failure of the bridge especially during the river floods. In this study, the use of oblong collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. Tests were conducted using one oblong pier in positions of 60degree under one flow conditions. The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. In this study, the time development of the local scour around the oblong pier fitted with and without collar plates was studied. Investigated was the effect of size and elevation collar on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. It was observed that, as the minimum depth of scour occurs for the square collar at width of 3B placed at elevation of 0.1B below the bed and the size of a collar plate increases, the scour decreases. Measuring depth of scouring based on experimental observation, an empirical relation is developed with regression coefficient 95%.  相似文献   

13.
《国际泥沙研究》2016,(2):159-163
Roughened horizontal aprons are bed covering scour countermeasures constructed downstream of stilling basins and other places where scour hole may develop. In these cases scour occurs at the edge of the apron which can lead to failure of the apron. In the present study, 24 experimental tests were carried out on four different aprons with (2, 5, 10 and 14.28 mm) roughness heights and two different bed material sizes of 0.8 and 1.4 mm under different flow conditions. The results indicated that as the roughness height of apron increases, a significant reduction in the scour depth occurs.  相似文献   

14.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

15.
Scour and flow field around a spur dike in a 90° bend   总被引:2,自引:1,他引:1  
Spur dike is an important element in river training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented. Sand with uniform grain size was used as the bed material. Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge. The three dimensional flow fields around a spur dike were investigated. The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

16.
Spur dike is an important element in fiver training that creates rapid variations in flow field, sediment transport and bed topography. The mechanism of flow and sediment transport in a channel bend is very complex, especially when a spur dike is constructed in a bend. Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels. In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented, Sand with uniform grain size was used as the bed material, Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge, The three dimensional flow fields around a spur dike were investigated, The maximum depth of scour was correlated to the Froude numbers, lengths and the locations of spur dike in the bend.  相似文献   

17.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
A three-dimensional(3D) non-hydrostatic numerical model is established to investigate local scour around four aligned circular piles in uniform and non-uniform sediment mixtures and to provide information for improving scour countermeasures design. In the current study, unsteady Reynolds averaged Navier-Stokes(URANS) equations along with a Re-normalization Group(RNG) k-ε model were applied to simulate the flow field. A non-uniform sediment transport model was applied to estimate the bedload tran...  相似文献   

20.
In this paper a modelling approach is presented to predict local scour under time varying flow conditions. The approach is validated using experimental data of unsteady scour at bed sills. The model is based on a number of hypotheses concerning the characteristics of the flow hydrograph, the temporal evolution of the scour and the geometry of the scour hole. A key assumption is that, at any time, the scour depth evolves at the same rate as in an equivalent steady flow. The assumption is supported by existing evidence of geometrical affinity and similarity of scour holes formed under different steady hydraulic conditions. Experimental data are presented that show the scour hole development downstream of bed sills due to flood hydrographs follow a predictable pattern. Numerical simulations are performed with the same input parameters used in the experimental tests but with no post‐simulation calibration. Comparison between the experimental and model results indicates good correspondence, especially in the rising limb of the flow hydrograph. This suggests that the underlying assumptions used in the modelling approach are appropriate. In principle, the approach is general and can be applied to a wide range of environments (e.g. bed sills, step‐pool systems) in which scouring at rapid bed elevation changes caused by time varying flows occurs, provided appropriate scaling information is available, and the scour response to steady flow conditions can be estimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号