首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
《Basin Research》2018,30(2):237-248
The Neogene section in the northern Taranaki Basin, offshore New Zealand, displays an interaction among prograding clinoforms, listric growth faults formed at the base of slope and mass transport deposits that fill the growth fault depocentres. This study focuses on one of these systems, the Karewa Fault and mass transport deposit (MTD), in order to understand the genetic relationship between the fault and the MTD in its hangingwall depocentre, i.e. did the MTD fill existing accommodation space? Did the MTD trigger growth fault displacement? Or is there some other relationship? Most mass transport deposits are elongate in the transport direction and exhibit a length:width aspect ratio of more than 1. However, the 90 km2 Karewa Fault MTD is at least three times wider than it is long, which is atypical for MTDs reported in the literature, where ~80% have a length:width ratio >1. The transport direction of the MTD is to the WNW, as indicated by the location and internal structure of the compressional toe and the headwall scarp region of the Karewa Fault. The structural and sequence geometries on seismic reflection data indicate the MTD formed during the late stage of growth fault activity, and locally truncates the upper part of the Karewa Fault. The MTD is inferred to have originated by local destabilization of the sediment package overlying the Karewa Fault related to the escape of overpressured fluids along the fault. The resulting MTD was translated locally by only a few kilometres. This unusual cause for an MTD also resulted in its atypical length–width–thickness aspect ratios.  相似文献   

2.
This paper uses three‐dimensional (3D) seismic data from the continental margin of Israel (Eastern Mediterranean) to describe a series of slump deposits within the Pliocene and Holocene succession. These slumps are linked to the dynamics of subsidence and deformation of the transform margin of the eastern Mediterranean. Repeated slope failure occurred during the post‐Messinian, when a clay‐dominated progradational succession was forming. This resulted in large‐scale slump deposits accumulating in the mid‐lower slope region of the basin at different stratigraphic levels. It is probable that the slumps were triggered by a combination of slope oversteepening, seismic activity and gas migration. The high spatial resolution provided by the 3D seismic data has been used to define a spectrum of internal and external geometries within slump deposits. Importantly, we recognise two main zones for many of the slumps on this margin: a depletion zone and an accumulation zone. The former is characterised by extension and translation, and the latter by complex imbricate thrusts and fold systems. Volume‐based seismic attribute analysis reveals transport directions within the slump deposits, which are predominately downslope, but with subtle variations particularly at the lateral margins. Basal shear surfaces are observed to ramp both up and down stratigraphy. Slump evolution occurs both by retrogressive upslope failure, and by downslope propagation (out‐of‐sequence) failure. Slump anatomy and the combination of factors responsible for slump failure and transport are relatively poorly understood, mainly because of the limited 3D of outcrop control; hence, this subsurface study is an example of how improved understanding of the mechanisms and products can be obtained using this 3D seismic methodology in unstable margin areas.  相似文献   

3.
The Upper Ordovician in the Tarim Basin contains 5000–7000 m of siliciclastic and calciclastic deep‐water, gravity‐flow deposits. Their depositional architecture and palaeogeographical setting are documented in this investigation based on an integrated analysis of seismic, borehole and outcrop data. Six gravity‐flow depositional–palaeogeomorphological elements have been identified as follows: submarine canyon or deeply incised channels, broad and shallow erosional channels, erosional–depositional channel and levee–overbank complexes, frontal splays‐lobes and nonchannelized sheets, calciclastic lower slope fans and channel lobes or sheets, and debris‐flow complexes. Gravity‐flow deposits of the Sangtamu and Tierekeawati formations comprise a regional transgressive‐regressive megacycle, which can be further classified into six sequences bounded by unconformities and their correlative conformities. A series of incised valleys or canyons and erosional–depositional channels are identifiable along the major sequence boundaries which might have been formed as the result of global sea‐level falls. The depositional architecture of sequences varies from the upper slope to abyssal basin plain. Palaeogeographical patterns and distribution of the gravity‐flow deposits in the basin can be related to the change in tectonic setting from a passive continental margin in the Cambrian and Early to Middle Ordovician to a retroarc foreland setting in the Late Ordovician. More than 3000 m of siliciclastic submarine‐fan deposits accumulated in south‐eastern Tangguzibasi and north‐eastern Manjiaer depressions. Sedimentary units thin onto intrabasinal palaeotopographical highs of forebulge origin and thicken into backbulge depocentres. Sediments were sourced predominantly from arc terranes in the south‐east and the north‐east. Slide and mass‐transport complexes and a series of debris‐flow and turbidite deposits developed along the toes of unstable slopes on the margins of the deep‐water basins. Turbidite sandstones of channel‐fill and frontal‐splay origin and turbidite lobes comprise potential stratigraphic hydrocarbon reservoirs in the basin.  相似文献   

4.
Relative ages of late Cenozoic stratigraphy throughout the Caspian region are referenced to regional stages that are defined by changes in microfauna and associated extreme (>1000 m) variations in Caspian base level. However, the absolute ages of these stage boundaries may be significantly diachronous because many are based on the first occurrence of either transgressive or regressive facies, the temporal occurrence of which should depend on position within a basin. Here, we estimate the degree of diachroneity along the Akchagyl regional stage boundary within the Caspian basin system by presenting two late Miocene‐Pliocene aged measured sections, Sarica and Vashlovani, separated by 50 km and exposed within the Kura fold‐thrust belt in the interior of the Kura Basin. The Kura Basin is a western subbasin of the South Caspian Basin and the sections presented here are located >250 km from the modern Caspian coast. New U‐Pb detrital zircon ages from the Sarica section constrain the maximum depositional age for Productive Series strata, a lithostratigraphic package considered correlative with the 2–3 Myr‐long regional Eoakchagylian or Kimmerian stage that corresponds to a period of extremely low (>500 m below the modern level) Caspian base level. This new maximum depositional age from the Productive Series at Sarica of 2.5 ± 0.2 Ma indicates that the regionally extensive Akchagyl transgression, which ended the deposition of the Productive Series near the Caspian coast at 3.2 Ma, may have appeared a minimum of 0.5 Myr later in the northern interior of the Kura Basin than at the modern Caspian Sea coast. The results of this work have important implications for the tectonic and stratigraphic history of the region, suggesting that the initiation of the Plio‐Pleistocene Kura fold‐thrust belt may have not been as diachronous along strike as previously hypothesized. More generally, these results also provide a measure of the magnitude of diachroneity possible along sequence boundaries, particularly in isolated basins. Comparison of accumulation rates between units in the interior of the Kura subbasin and the South Caspian main basin suggest that extremely large variations in these rates within low‐stand deposits may be important in identifying the presence of subbasins in older stratigraphic packages.  相似文献   

5.
New classification system for mass transport complexes in offshore Trinidad   总被引:3,自引:1,他引:2  
This paper delineates our use of 10 708 km2 of three‐dimensional (3D) seismic data from the continental margin of Trinidad and Tobago West Indies to describe a series of mass transport complexes (MTCs) that were deposited during the Plio‐Pleistocene. This area, situated along the obliquely converging boundary of the Caribbean/South American plates and proximal to the Orinoco Delta, is characterized by catastrophic shelf‐margin processes, intrusive/extrusive mobile shales and active tectonism. Extensive mapping of different stratigraphic intervals of the 3D seismic survey reveals several MTCs that range in area from 11.3 to 2017 km2. Three types of MTCs are identified: (1) shelf‐attached systems that were fed by shelf‐edge deltas whose sediment input is controlled by sea‐level fluctuations and sedimentation rates; (2) slope‐attached systems, which occur when upper‐slope sediments catastrophically fail owing to gas‐hydrate disruptions and/or earthquakes and (3) locally detached systems, formed when local instabilities in the seafloor trigger relatively small collapses. Such classification of the relationship between slope mass failures and sourcing regions enables a better understanding of the nature of initiation, length of development history and petrography of such MTCs. 3D seismic enables more accurate calculation of deposit volumes, improves deposit imaging, and, thus, increases the accuracy of physical and computer simulations of mass failure processes.  相似文献   

6.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   

7.
The application of high‐resolution seismic geomorphology, integrated with lithological data from the continental margin offshore The Gambia, northwest Africa, documents a complex tectono‐stratigraphic history through the Cretaceous. This reveals the spatial‐temporal evolution of submarine canyons by quantifying the related basin depositional elements and providing an estimate of intra‐ versus extra‐basinal sediment budget. The margin developed from the Jurassic to Aptian as a carbonate escarpment. Followed by, an Albian‐aged wave‐dominated delta system that prograded to the palaeo‐shelf edge. This is the first major delivery of siliciclastic sediment into the basin during the evolution of the continental margin, with increased sediment input linked to exhumation events of the hinterland. Subaqueous channel systems (up to 320 m wide) meandered through the pro‐delta region reaching the palaeo‐shelf edge, where it is postulated they initiated early submarine canyonisation of the margin. The canyonisation was long‐lived (ca. 28 Myr) dissecting the inherited seascape topography. Thirteen submarine canyons can be mapped, associated with a Late Cretaceous‐aged regional composite unconformity (RCU), classified as shelf incised or slope confined. Major knickpoints within the canyons and the sharp inflection point along the margin are controlled by the lithological contrast between carbonate and siliciclastic subcrop lithologies. Analysis of the base‐of‐slope deposits at the terminus of the canyons identifies two end‐member lobe styles, debris‐rich and debris‐poor, reflecting the amount of carbonate detritus eroded and redeposited from the escarpment margin (blocks up to ca. 1 km3). The vast majority of canyon‐derived sediment (97%) in the base‐of‐slope is interpreted as locally derived intra‐basinal material. The average volume of sediment bypassed through shelf‐incised canyons is an order of magnitude higher than the slope‐confined systems. These results document a complex mixed‐margin evolution, with seascape evolution, sedimentation style and volume controlled by shelf‐margin collapse, far‐field tectonic activity and the effects of hinterland rejuvenation of the siliciclastic source.  相似文献   

8.
《Basin Research》2018,30(4):816-834
The control of slide blocks on slope depositional systems is investigated in a high‐quality 3D seismic volume from the Espírito Santo Basin, SE Brazil. Seismic interpretation and statistical methods were used to understand the effect of differential compaction on strata proximal to the headwall of a blocky mass‐transport deposit (MTD), where blocks are large and undisturbed (remnant), and in the distal part of this same deposit. The distal part contains smaller rafted blocks that moved and deformed with the MTD. Upon their emplacement, the positive topographic relief of blocks created a rugged seafloor, confining sediment pathways and creating accommodation space for slope sediment. In parallel, competent blocks resisted compaction more than the surrounding debrite matrix during early burial. This resulted in differential compaction between competent blocks and soft flanking strata, in a process that was able to maintain a rugged seafloor for >5 Ma after burial. Around the largest blocks, a cluster of striations associated with a submarine channel bypassed these obstructions on the slope and, as a result, reflects important deflection by blocks and compaction‐related folds that were obstructing turbidite flows. Log‐log graphs were made to compare the width and height of different stratigraphic elements; blocks, depocentres and channels. There is a strong correlation between the sizes of each element, but with each subsequent stage (block–depocentre–channel) displaying marked reductions in height. Blocky MTDs found on passive margins across the globe are likely to experience similar effects during early burial to those documented in this work.  相似文献   

9.
The thick (>1 km) Neoproterozoic Otavi Group of Namibia accumulated after ca. 760 Ma along >700 km of the faulted margin of the Congo Craton. The margin shows a north to south, downbasin transition from a shallow‐water carbonate shelf (Otavi Platform) to offshore deepwater slope (Outjo Basin). Within the latter, the Abenab and Tsumeb Subgroups contain large volumes of poorly sorted breccias, conglomerates and diamictites composed principally of locally derived carbonate. Diamictite facies were reported in the 1930s as tillites left by an ice sheet (although the absence of striated clasts and other key glacial indicators was viewed as problematic). Later workers rejected a glacial origin concluding that Outjo basin facies were deposited as parts of prograding submarine wedges built by mass flows during active rifting. Recently, the Snowball Earth hypothesis has returned to the earlier glacial interpretation; arguing that these strata represent a record of extraordinary late Neoproterozoic glacial and interglacial climates when global temperatures fluctuated by up to 100°C. Facies analysis of breccias, diamictites, conglomerates and sandstone strata of the Otavi Group identifies them as genetically related, subaqueously deposited sediment gravity flows. They lack diagnostic indicators of any one specific climate in source areas. These facies were all deposited in deepwater at the foot of landslide‐prone scarp blocks where debris flows and turbidity currents moved large volumes of coarse, freshly broken carbonate debris produced by faulting. Breccias, diamictites, conglomerates and sandstones occur in composite fining‐ and thinning‐upward bundles that are directly analogous to those reported from many other faulted margins in the Phanerozoic stratigraphic record. These rocks provide no clear sedimentological signature of a glacial source or catastrophic Snowball Earth‐type temperature fluctuations. Instead, they point to a dominant tectonic control on sedimentation related to faulting along the margin of the Congo Craton.  相似文献   

10.
11.
Analysis of three‐dimensional (3D) seismic data from the headwall area of the Storegga Slide on the mid‐Norwegian margin provides new insights into buried mass movements and their failure mechanisms. These mass movements are located above the Ormen Lange dome, a Tertiary dome structure, which hosts a large gas reservoir. Slope instabilities occurred as early as the start of the Plio‐Pleistocene glacial–interglacial cycles. The 3D seismic data provide geophysical evidence for gas that leaks from the reservoir and migrates upward into the shallow geosphere. Sediments with increased gas content might have liquefied during mobilization of the sliding and show different flow mechanisms than sediments containing less gas. In areas where there is no evidence for gas, the sediments remained intact. This stability is inherited by overlying strata. The distribution of gas in the shallow subsurface (<600 m) may explain the shape of the lower Storegga headwall in the Ormen Lange area.  相似文献   

12.
The effect of various erosional processes on the relief development of a carbonate platform margin is documented from outcrops of the Southern Alps, northern Italy, by the occurrence of truncation surfaces and redistribution of remobilized sediments. The periplatform depositional history, with periods of intensive submarine erosion along the north-western Trento plateau margin, is recorded by various carbonate deposits ranging in age from the Early Jurassic to Late Cretaceous with numerous gaps. The first Early Jurassic period of submarine erosion is marked by truncation and extensive tectonic fracturing of lower Liassic oolitic skeletal periplatform deposits. These are overlain by pelmicritic sediments of late Hettangian to Toarcian age. The second period of submarine erosion during the late Early Jurassic resulted in almost complete truncation of the pelmicritic unit. Crinoidal to oolitic periplatform carbonate sands were subsequently deposited along the carbonate margin until the Aalenian/Bajocian. The third truncation surface was produced by partial current erosion of the crinoidal to oolitic periplatform deposits during the late Bajocian to Callovian. The fourth, and most prominent, truncation surface was produced by erosion during the Early Cretaceous cutting down from Aptian/Albian pelagic units to Toarcian periplatform deposits. The resulting submarine relief was completely buried during the late Maastrichtian by onlapping pelagic sediments. The documentation of the depositional history during the Late Mesozoic of the north-western Trento plateau pinpoints the main mechanisms responsible for the relief of the drowned carbonate platform margin. Extensional tectonic activity during differential subsidence and current-induced erosional truncation, followed by gravitational downslope mass transport and rapid pelagic burial mainly determined the morphology of the drowned carbonate platform margin.  相似文献   

13.
The Permian Ecca Group of the Karoo Basin, South Africa preserves an extensive well-exposed siliciclastic basin floor, slope and shelf-edge delta succession. The Kookfontein Formation includes multiple sedimentary cycles that display clinoform geometries and are interpreted to represent the deposits of a slope to shelf succession. The succession exhibits progradational followed by aggradational stacking of deltaic cycles that is related to a change in shelf-edge trajectory, and lies within two depositional sequences. Sediment was transferred to the slope via overextension of deltas onto and over the shelf edge, resulting in failure and re-adjustment of local slope gradients. The depositional facies and architecture of the Kookfontein Formation record the change from a bypass- to accretion-dominated margin, which is interpreted to reflect a decrease in sediment transport efficiency as the slope gradient decreased, slope length increased and shelf-edge trajectory rose. During this time the delivery system changed from point-sourced basin-floor fans fed by slope channels to starved basin-floor with sand-rich slope clinoforms. This is an example of a progradational margin in which the younger slope system is interpreted to be of a different style to the older slope system that fed the underlying sand-rich basin floor fans.  相似文献   

14.
In this study, detailed mapping of the ‘Messinian markers’ and examination of their geometrical relationships in the SW Valencia trough (Western Mediterranean) have revealed the style and depositional processes associated with emersion of continental margins during the Messinian Salinity Crisis (MSC). Based on multichannel seismic profiles and well data, this article evidences the existence of two Messinian depositional units in intermediate basins (Complex Unit and Upper Unit) and four main Messinian erosional surfaces (Margin Erosion Surface, Bottom Surface, Top (Erosion) Surface and Intermediate Surface). Results show that (1) initial rapid sea‐level drawdown and exposure of the shelf and upper slope of the Valencia margin induced large‐scale destabilization of the continental slope and deposition of large detrital bodies at the base‐of‐slope in the form of major mass‐transport deposits (MTD); (2) as sea level continued to drop, the development of the Margin Erosion Surface attained full development on the margins and eroded the clastic units (MTDs) deposited during initial drawdown. At the same time, a submarine drainage network formed in the deepwater Valencia trough; (3) persistent lowstand and restrictive conditions in the area resulted in deposition of the evaporites that form the Upper Unit in the SW Valencia trough.  相似文献   

15.
The NE portion of Gela Basin in the Sicily Channel is affected by multiple slope failures originated during the late‐Quaternary. Basin sequences show evidence of stacked acoustically transparent and/or chaotic units, characterized by irregular upper surfaces, interpreted as mass‐transport deposits. The seafloor morphology also shows evidence of both old, partially buried, as well as recent slide products. Two recent slides exposed at seafloor, only 6 km apart (Twin Slides), are similar in geomorphological parameters, age and multistage evolution. Multistage failure of Twin Slides evolved from mud flows, derived from the extensive failure of less consolidated post‐glacial units, to localized slides (second stage of failure) affecting older and more consolidated materials. Although Twin Slides are very close to each other and have similar runout and fall height, they produced very dissimilar organization of the displaced masses, likely reflecting the distinct source units affected by failures. Integrating geophysical, sedimentological, structural and palaeontological data, a detailed investigation was conducted to determine the size and internal geometry of this mass‐transport complex, to explain the differentiated product and to shed light on its predisposing factors, triggers and timing.  相似文献   

16.
《Basin Research》2018,30(4):650-670
The Palaeogene Isparta Basin of southwestern Anatolia formed between two convergent arms of the Isparta Bend orocline of the Tauride orogen. The origin of this tightening orocline is hypothetically explained in plate‐tectonic terms. Basin sedimentation commenced on a down‐warped Mesozoic carbonate platform of a crustal block accreted at the end of Cretaceous to the southern margin of the Anatolian plate. The basin earliest deposits are Palaeocene reddish mudstones with a fossil‐barren condensed basal part and increasingly interspersed with thin calcarenitic turbidites towards the top. The supply of turbiditic sediment to the basin plain subsequently increased, as the upper‐bathyal basin plain became surrounded from both sides by a narrow littoral shelf with an advancing turbiditic slope ramp. A major forced regression occurred at the end of Bartonian, causing incision of subaerial to submarine valleys up 600 m deep, filled in with gravelly to sandy turbidites and debrisflow deposits during the subsequent rise of relative sea level. The half‐filled valleys were re‐incised due to a Rupelian forced regression and were fully filled with fluvio‐deltaic bayhead deposits during a final marine transgression that re‐established the basin‐margin biocalcarenitic shelf. The littoral environment then expanded across the shallowing basin, as the basin axial zone was up‐domed and eroded to bedrock level at the end of Oligocene and the basin was tectonically inverted in Miocene. The pattern of intra‐orocline foreland sedimentation documented by this case study provides tentative criteria for the recognition of synorogenic oroclines and for their distinction from post‐orogenic oroclines.  相似文献   

17.
High‐resolution seismic imaging and coring in Lago Fagnano, located along a plate boundary in Tierra del Fuego, have revealed a dated sequence of Holocene mass‐wasting events. These structures are interpreted as sediment mobilizations resulting from loading of the slope‐adjacent lake floor during mass‐flow deposition. More than 19 mass‐flow deposits have been identified, combining results from 800 km of gridded seismic profiles used to site sediment cores. Successions of up to 6‐m thick mass‐flow deposits, pond atop the basin floor and spread eastward and westward following the main axis of the eastern sub‐basin of Lago Fagnano. We developed an age model, on the basis of information from previous studies and from new AMS‐14C ages on cored sediments, which allows us to establish a well‐constrained chronologic mass‐wasting event‐catalogue covering the last ~12 000 years. Simultaneously triggered, basin‐wide lateral slope failure and the formation of multiple debris flow and postulated megaturbidite deposits are interpreted as the fingerprint of paleo‐seismic activity along the Magallanes‐Fagnano transform fault that runs along the entire lake basin. The slope failures and megaturbidites are interpreted as recording large earthquakes occurring along the transform fault since the early Holocene. The results from this study provide new data about the frequency and possible magnitude of Holocene earthquakes in Tierra del Fuego, which can be applied in the context of seismic hazard assessment in southernmost Patagonia.  相似文献   

18.
In this study, we use seismic reflection, well and core data to investigate the role that basin physiography and sediment routing systems played on the distribution, geometry and stratigraphic architecture of Upper Cretaceous submarine fans (SF) offshore Norway. The Late Cretaceous Møre‐Trøndelag margin of western Norway was characterised by steep submarine slopes (gradient of ~0.3°–3°). Mudstones dominate the Upper Cretaceous slope succession, although a few regionally extensive, sandstone‐dominated units are developed. We focus on the most regionally extensive sandstone unit, which is of Late Turonian‐to‐Early Coniacian age. Mapping and visualisation of 2D and 3D seismic reflection data and analysis of well data indicates that the sandstone unit comprises a total of 11 SF, which were fed by sand‐rich sediment gravity flows routed through multiple upper slope canyons. Based on the internal organisation of seismic facies, four fan types have been identified: (i) Type Ia fans, which are characterised by <10 erosional channel complexes at their bases and aggradational to landward‐stepping lobes in their upper parts; (ii) Type Ib fans, which are characterised by >10 erosional channel complexes at their bases and aggradational to landward‐stepping lobe and mass‐transport deposits near the fan apex in their upper parts; (iii) Type II fans, which are dominated by aggradational lobe deposits; and (iv) Type III fans, which are dominated by a single channel complex that passes downdip into a small terminal lobe. The different fan types are interpreted to reflect variable stratigraphic responses to source proximity and basin physiography, which is principally related to the degree of local fault reactivation and differential compaction. This variability highlights the diversity of fan types that may occur over short distances along continental margins, and demonstrates the importance of local controls in understanding the internal stratigraphic variability that may be present in deep‐marine successions.  相似文献   

19.
The well preserved and undissected Columbia Mountain landslide, which is undergoing suburban development, was studied to estimate the timing and processes of emplacement. The landslide moved westward from a bedrock interfluve of the northern Swan Range in Montana, USA onto the deglaciated floor of the Flathead Valley. The landslide covers an area of about 2 km2, has a toe-to-crown height of 1100 m, a total length of 3430 m, a thickness of between 3 and 75 m, and an approximate volume of 40 million m3. Deposits and landforms define three portions of the landslide; from the toe to the head they are: (i) clast-rich diamictons made up of gravel-sized angular rock fragments with arcuate transverse ridges at the surface; (ii) silty and sandy deposits resting on diamictons in an internally drained depression behind the ridges; and (iii) diamictons containing angular and subangular pebble-to block-sized clasts (some of which are glacially striated) in an area of lumpy topography between the depression and the head of the landslide. Drilling data suggest the diamictons cover block-to-slab-sized bedrock clasts that resulted from an initial stage of the failure.The landslide moved along a surface that developed at a high angle to the NE-dipping, thinly bedded metasediments of the Proterozoic Belt Supergroup. The exposed slope of the main scarp dips 30–37°W. A hypothetical initial rotational failure of the lower part of a bedrock interfluve may have transported bedrock clasts into the valley. The morphology and deposits at the surface of the landslide indicate deposition by a rock avalanche (sturzstrom) derived from a second stage of failure along the upper part of the scarp.The toe of the Columbia Mountain landslide is convex-west in planview, except where it was deflected around areas now occupied by glacial kettles on the north and south margins. Landsliding, therefore, occurred during deglaciation of the valley while ice still filled the present-day kettles. Available chronostratigraphy suggests that the ˜1-km thick glacier in the region melted before 12,000 14C years BP—within 3000 years of the last glacial maximum. Deglaciation and hillslope failure are likely causally linked. Failure of the faceted interfluve was likely due tensile fracturing of bedrock along a bedding-normal joint set shortly after glacial retreat from the hillslope.Open surficial tension fractures and grabens in the Swan Range are limited to an area above the crown of the landslide. Movement across these features suggests that extensional flow of bedrock (sackung) is occurring in what remains of the ridge that failed in the Columbia Mountain landslide. The fractures and grabens likely were initiated during failure, but their morphologies suggest active extension across some grabens. Continued movement of bedrock above the crown may result in future mass movements from above the previous landslide scarp. Landslides sourced from bedrock above the scarp of the late-glacial Columbia Mountain landslide, which could potentially be triggered by earthquakes, are geologic hazards in the region.  相似文献   

20.
Sediment supply rate and accommodation regime represent primary controls on the depositional architecture of basin margin successions, but their interaction is commonly inferred from 2D dip profiles and/or with limited constraints on sedimentary facies. In this study, three parallel (>40 km long) 2D depositional oblique‐dip profiles from outcrops of the lower Waterford Formation (Karoo Basin, South Africa) have been correlated. This data set provides a rare opportunity to assess the lateral variability in the sedimentary process record of the shelf‐to‐slope transition for eight successive clinothems over a 900 km2 area. The three profiles show similar shelf‐edge rollover trajectories, but this belies significant along‐margin variability in sedimentary processes and down‐dip sediment supply. The depositional architecture of three successive clinothems (WfC 3, 4 and 5) also show along‐shelf physiographic differences. The reconstructed shelf‐edge rollover position is not straight, and a westward curve to the north coincides with an area of greater sand supply to the slope beyond a shelf dominated by wave and storm processes. All the clinothems thicken northwards, indicating an along‐margin long‐term increase in accommodation that was maintained through multiple shoreline transits across the shelf. The origin of the differential subsidence cannot be discriminated confidently between tectonic or compaction processes. The interplay of basin margin physiography, differential subsidence rate and process regime resulted in significant across‐strike variability in the style and timing of sediment dispersal patterns beyond the shelf‐edge rollover. This study highlights the challenge for accurate prediction of the sediment partitioning across the shelf‐edge rollover in subsurface studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号