首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Abstract— Cosmic ray produced tracks, He and Ne isotopes and radionuclides have been studied in the recently fallen H5 chondrite Gujargaon. The results indicate an exposure age of about 7 Ma. The high track production rates of 0.25 to 0.69 × 106 cm?2 Ma?1 suggest that the Gujargaon meteoroid had a small size (Re = 9–10 cm) in space and suffered 1–3 cm ablation in the atmosphere. The conclusion about the meteoroid size is supported by the low activity of neutron capture isotope 60Co and high spallogenic 22Ne/21Ne ratio of about 1.25. The data on long lived isotopes 10Be, 53Mn and 26Al are used to derive production rates of these isotopes in a rock having a radius of 9 cm and the activity levels of the short lived isotopes 22Na and 54Mn are used to estimate the effect of modulation of galactic cosmic rays at the time of solar maximum of 1982.  相似文献   

2.
The composition of the atmosphere is regulated by biological activity on a variety of time scales. Global biogeochemical cycles of nitrogen, carbon and sulfur are discussed with an emphasis on N2O, NO, CO2, CH4 and SO2. It is argued that Man is a major influence on the budget of these gases. His influence is attributed primarily to use of fossil fuels, to various aspects of agriculture and to the disposal of human and animal waste.  相似文献   

3.
A one-dimensional model for thinning of the plasma sheet is developed on the basis of launching a fast mode MHD rarefaction wave propagating in the tailward direction along the plasma sheet. Behind the rarefaction wave the pressure is reduced, leading to thinning of the plasma sheet and also to an Earthward plasma flow with a speed on the order of the sound speed a0. The plasma sheet thickness is reduced by a factor of 2 if an Earthward plasma flow speed of 0.8a0 is induced. The predictions of the model are in reasonable agreement with observations.  相似文献   

4.
For 60 Class DII radio sources, I calculate the linear size of the radio components d in the direction perpendicular to the line joining the components. I find 1) d has an upper limit of 150 kpc and a lower limit of 4~ 6 kpc, and 2) d, is correlated with the luminosity Mv of the central body, smaller components being associated with lower luminosities. This correlation is shown both by the regression of Mv on d, for 13 sources with redshifts between 0.35 and 0.60 and by an upper envelope in the Mv ? d plot for the entire sample. This result is in conflict with the usual expanding models of radio lobes. An alternative model is proposed here: a radio lobe is taken to be a mass of turbulent plasmon formed with the intergalactic medium behind the shock front excited by an energy-carrying beam from the central body. The size of the lobe varies with the drilling velocity at the tip of the beam, which in turn depends on the energy transported within the beam. As the central body gets depleted, both its luminosity and the energy injected into the beam become less and the lobe gets smaller. An exponentially decaying central store can reproduce the observed statistical relation.  相似文献   

5.
The effects of non-uniform plasma target ionisation on the spectrum of thick-target HXR bremsstrahlung from a non-thermal electron beam are analysed. In particular the effect of the target ionisation structure on beam collisional energy losses, and hence on inversion of an observed photon spectrum to yield the electron injection spectrum, is considered and results compared with those obtained under the usual assumption of a fully ionised target.The problem is formulated and solved in principle for a general target ionisation structure, then discussed in detail for the case of a step function distribution of ionisation with column depth as an approximation to the sharp coronal–chromospheric step structure in solar flare plasmas. It is found that such ionisation structure has very dramatic effects on derivation of the thick-target electron injection spectrum F0(E0) as compared with the result F*0(E 0) obtained under the usual assumption of a fully ionised target: (a) Inferred F*0 contain more electrons than F 0 and in some cases include electrons at energies where none are actually present. Although the total (energy-integrated) beam fluxes in the two cases do not differ by a factor of more than Aee/AeH, the spectral shapes can differ greatly over finite energy intervals resulting in the danger of misleading results for total fluxes obtained by extrapolation. (b) The unconstrained mathematical solution for F0 for any photon spectrum is never unique, while that for F*0 is unique. When the physical constraint F0 0 is added, for some photon spectra solutions for F0 may not exist or may not be unique. (This is not an effect of noise but of real analytic ambiguity.) (c) For data corresponding to F*0 with a low-energy cut-off, or a cut-off or rapid enough exponential decline at high energies, a unique solution F0 does exist and we obtain a recursive summation for its evaluation.Consequently, in future work on the inversion of HXR bremsstrahlung spectra it will be vital for algorithms to include the effects of target ionisation if spurious results on thick-target electron spectra are not to be inferred. Finally it is pointed out that the depth of the transition zone, and its evaporative evolution during flares may be derivable from its effect on the HXR spectrum.  相似文献   

6.
We have theoretically studied the influence of a far-infrared radiation (FIR) field from Hπ region on the cooling by C and O atoms, C+ ion and CO molecule in a photodissociation region, and a molecular cloud associated with Hπ region (hereinafter referred as HI region) at low temperatures (T k≤200 K). Comparisons have been made for cooling with and without FIR for two extreme abundances (10−4 and 10−7) of the mentioned species for temperatures ranging between 10 and 200K and an hydrogen particle density range 10 cm−3n o≤ 107 cm3. The cooling by the species with low line-splitting (CI, Cπ and CO) is significantly influenced by the radiation field for temperaturesT k < 100 K while the effect of radiation field on cooling by OI is significant even at higher temperatures (T k > 100 K). The effect of FIR field on the cooling of CO from low rotational transitions is negligibly small, whereas it is considerable for higher transitions. In general, the cooling terms related to the short-wavelength transitions are more affected by FIR than those related to longer wavelengths. It is also demonstrated here that in the determination of thermal structure of an HI region the dust grains play an important role in the heating of gas only through photoelectron emission following irradiation by far-ultraviolet (FUV) radiation, as the infrared radiation from the dust is too small to have substantial effect on the cooling. It is found that in the Hπ /HI interface the FIR field from grains in the Hπ region is not capable of modifying the temperature of the warmest regions but does so in the inner part where the temperature is low enough.  相似文献   

7.
The stability of hierarchical triple system is studied in the case of an extrasolar planet or a brown dwarf orbiting a pair of main sequence stars. The evolution of triple system is well modelled by random walk (RW) diffusion, particularly in the cases where the third body is small and tracing an orbit with a large eccentricity. A RW model neglects the fact that there are many periodic orbits accompanied by stability islands, and hence inherently overestimates the instability of the system. The present work is motivated by the hope to clarify how far the RW model is applicable. Escape time and the surface section technique are used to analyse the outcome of numerical integrations. The analysis shows that the RW-like model explains escape of the third body if the initial configuration is directly outside of the KAM tori. A small gap exists in (q 2/a 1, e 2)-plane between locations of the stability limit curves based on our numerical study and on RW-model (the former is shifted by –1.4 in q 2/a 1 direction from the latter).  相似文献   

8.
The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life.The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H2O2 and H2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H2O2-H2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H2O2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H2O2-H2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.  相似文献   

9.
Abstract— Martian crust endured several large meteoroid impacts subsequent to the demise of an early global magnetic field. Shock pressures associated with these impacts demagnetized parts of the crust, to an extent determined by shock resistance of magnetic materials in the crust. Impacts that form large basins generate pressures in excess of 1 GPa within a few crater radii of their impact sites. Crustal materials near the surface experience significantly reduced impact pressure, which varies with depth and distance from the impact point. We present new demagnetization experiments on magnetite (Fe3O4), hematite (α‐Fe2O3), and titanohematite (Fe2‐xTixO3 where x <0.2). Our measurements show that pressures of ?1 GPa are sufficient to partially demagnetize all of these minerals. The efficiency of demagnetization by impact pressure is proportional to the logarithm of the minerals' magnetic coercivity. The impact pressure magnetic response from exsolved titanohematite samples is consistent with the magnetization decay near Prometheus impact basin and may point to an oxidized igneous rock in Terra Sirenum region at the time of acquisition of magnetic remanence. The remaining magnetic anomalies near large impact basins suggest moderate crustal coercivity. These anomalies point to titanomagnetite as a magnetic carrier and more reduced condition during crustal formation.  相似文献   

10.
Of the three collinear libration points of the Sun–Earth Circular Restricted Three-Body Problem (CR3BP), L3 is that located opposite to the Earth with respect to the Sun and approximately at the same heliocentric distance. Whereas several space missions have been launched to the other two collinear equilibrium points, i.e., L1 and L2, taking advantage of their dynamical and geometrical characteristics, the region around L3 is so far unexploited. This is essentially due to the severe communication limitations caused by the distant and permanent opposition to the Earth, and by the gravitational perturbations mainly induced by Jupiter and the close passages of Venus, whose effects are more important than those due to the Earth. However, the adoption of a suitable periodic orbit around L3 to ensure the necessary communication links with the Earth, or the connection with one or more relay satellites located at L4 or L5, and the simultaneous design of an appropriate station keeping-strategy, would make it possible to perform valuable fundamental physics and astrophysics investigations from this location. Such an opportunity leads to the need of studying the ways to transfer a spacecraft (s/c) from the Earth’s vicinity to L3. In this contribution, we investigate several trajectory design methods to accomplish such a transfer, i.e., various types of two-burn impulsive trajectories in a Sun-s/c two-body model, a patched conics strategy exploiting the gravity assist of the nearby planets, an approach based on traveling on invariant manifolds of periodic orbits in the Sun–Earth CR3BP, and finally a low-thrust transfer. We examine advantages and drawbacks, and we estimate the propellant budget and time of flight requirements of each.  相似文献   

11.
A variety of astronomical phenomena appear to not satisfy the ergodic hypothesis in the relevant stationary state, if any. As such, there is no reason for expecting the applicability of Boltzmann–Gibbs (BG) statistical mechanics. Some of these phenomena appear to follow, instead, nonextensive statistical mechanics. In the same manner that the BG formalism is based on the entropy S BG=?k i p i ln p i, the nonextensive one is based on the form S q=k(1 ?∑ i p i q)/(q? 1) (with S 1=S BG). The stationary states of the former are characterized by an exponential dependence on the energy, whereas those of the latter are characterized by an (asymptotic) power law. A brief review of this theory is given here, as well as of some of its applications, such as the solar neutrino problem, polytropic self-gravitating systems, galactic peculiar velocities, cosmic rays and some cosmological aspects. In addition to these, an analogy with the Keplerian elliptic orbits versus the Ptolemaic epicycles is developed, where we show that optimizing S q with a few constraints is equivalent to optimizing S BG with an infinite number of constraints.  相似文献   

12.
Abstract— Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A‐B‐C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set), ascended to the lunar surface, and erupted as a fire fountain. A barometer created from multiple saturation points provides a depth estimate of other glasses in the A‐B‐C trend and of the depths of assimilation. This barometer demonstrates that the Apollo 15 A‐B‐C trend originated over a depth range of ?460 km to ?260 km within the moon.  相似文献   

13.
Sekanina and Farrell's model for the striated dust tails of comets describes the formation of striae as a two-step fragmentation process that is characterized by an ejection time te of parent particles, by their radiation pressure acceleration βp, and by their fragmentation time tf. Of these three, tf is the weakest parameter in that a range oftf offers a set of nearly equivalent solutions. In this context, we comment on Nishioka et al.'s finite-lifetime model, which is a modification of the fragmentation model. We propose a truncated Gaussian function as a first-approximation distribution law for particle fragmentation times. We apply this generalized model to a stria in comet Hale-Bopp detected on March 5–15, 1997 and analyzed by Pittichová et al. in a recent paper. We find that in order to fit the stria's estimated width of ∼150 000 km, the fragmentation times cannot be distributed over a period of more than approximately 2 to 3 days. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Abstract— The origin of hematite detected in Martian surface materials is commonly attributed to weathering processes or aqueous precipitation. Here, we present a new hematite formation mechanism that requires neither water nor weathering. Glass‐rich basalts with Martian meteorite‐like chemistry (high FeO, low Al2O3) oxidized at high (700 and 900 °C) temperatures in air and CO2, respectively, form thin (<1 μm) hematite coatings on their outermost surfaces. Hematite is manifested macroscopically by development of magnetism and a gray, metallic sheen on the glass surface and microscopically by Fe enrichment at the glass surface observed in element maps. Visible and near‐infrared, thermal infrared, and Raman spectroscopy confirm that the Fe enrichment at the oxidized glass surfaces corresponds to hematite mineralization. Hematite formation on basaltic glass is enabled by a mechanism that induces migration of Fe2+ to the surface of an oxidizing glass and subsequent oxidation to form hematite. A natural example of the hematite formation mechanism is provided by a Hawaiian basalt hosting a gray, metallic sheen that corresponds to a thin hematite coating. Hematite coating development on the Hawaiian basalt demonstrates that Martian meteorite‐like FeO contents are not required for hematite coating formation on basalt glass and that such coatings form during initial extrusion of the glassy basalt flows. If gray hematite originating as coatings on glassy basalt flows is an important source of Martian hematite, which is feasible given the predominance of igneous features on Mars, then the requirement of water as an agent of hematite formation is eliminated.  相似文献   

15.
《Planetary and Space Science》1999,47(8-9):1077-1100
The geometric albedos of Uranus and Neptune, inferred from archived Hubble Space Telescope observations and from the ground-based measurements of Karkoschka, 1994, are modeled in the wavelength range 2200–4200 Å. The radiative transfer model, which includes Rayleigh–Raman scattering and Mie scattering by haze particles, aims at reproducing the fine structure of the geometric albedos at a resolution of 2–10 Å. The steep variation of the total optical depth allows to investigate the influences of both the stratospheric and tropospheric haze layers and that of the deep tropospheric cloud, although their relative importance is difficult to estimate accurately. Using the haze models of Baines et al., 1995, the optical properties of the Mie scatterers are inferred. The haze material on Uranus is characterized by a slowly decreasing imaginary index of refraction: ni varies from about 0.10 to 0.01–0.02 between 2200 and 4200 Å. Below 3000 Å, the absorptivity of Neptuness haze material is comparable to that on Uranus or slightly lower (ni ∼ 0.03–0.10). Above 3000 Å, it exhibits a steeper decrease (from 0.30 to 0.003). The main source of uncertainty at longer wavelengths is the reflectivity of the underlying (H2S ?) cloud. At shorter wavelengths, molecular scattering strongly dominates Mie scattering and the determination of the absorptivities is estimated to be accurate within a factor of 2. For Neptune, there is an additional uncertainty due to the inability of the initial haze model to provide a fit to the observed albedo. The Baines et al. model was modified by multiplying the number-densities of the hydrocarbons haze layers by a factor of 2.5–4.8, making it more consistent with the results of Pryor et al., 1992. For Uranus, these results suggest a darkening of the southern hemisphere since the Voyager epoch, in agreement with recent HST imaging. As a whole, the Neptunian haze seems to be more transparent than that of Uranus, possibly owing to the more turbulent dynamical state of the troposphere. Longwards of 3000 Å, the inferred absorptivities are consistent with laboratory measurements on tholins produced from CH4–H2 gas mixtures (Khare et al., 1987). The para-H2 mole fraction on both planets is constrained from the strength of a prominent H2 Raman feature at 2853 Å. On Uranus, at latitudes between 45 and 75°S and in the 50–500 mbar pressure range, the best agreement is obtained with an equilibrium para-H2 distribution. On Neptune, there is an indication of a slight departure from equilibrium in the same pressure range at mid-southern latitudes. Although this new method is significantly less accurate, its results are consistent with those of previous investigations based on the analysis of H2 quadrupole lines (Baines et al., 1995) and of the Voyager IRIS spectra (Conrath et al., 1998).  相似文献   

16.
Earlier work on the oscillations of an ellipsoid is extended to investigate the behaviour of a nonequilibrium compressible homogeneous rotating gaseous ellipsoid, with the components of the velocity field as linear functions of the coordinates, and with parallel angular velocity and uniform vorticity. The dynamical behaviour of the ellipsoid is obtained by numerically integrating the relevant differential equations for different values of the initial angular velocity and vorticity. This behaviour is displayed by the (a 1,a 2) and (a 1,a 3) phase plots, where thea i's (i = 1, 2, 3) are the semi-diameters, and by the graphs ofa 1,a 2,a 3, the volume, and the angular velocity as functions of time.The dynamical behaviour of the nonequilibrium ellipsoid depends on the deviation of the angular momentum from its equilibrium value; for larger deviations, the oscillations are more nonperiodic with larger amplitudes.An initially ellipsoidal configuration always remains ellipsoidal, but it cannot become spheroidal about its rotation axis, though it may become spheroidal instantaneously about either one of the other two principal axes.For an ellipsoid approaching axisymmetry about its axis of rotation, the angular velocity can suddenly increase by a large amount. Thus if an astrophysical object can be modelled by a nonequilibrium ellipsoid, it may occasionally undergo sudden large increases of angular velocity.  相似文献   

17.
Recent models of Titan's interior predict that the satellite contains an ocean of water and ammonia under an icy layer. Direct evidence for the presence of an ocean can be provided on the Cassini mission only by radio science determination of Titan Love number k2. Simulations that use the five flybys T11, T22 T33, T45, and T68 (the latter two belonging to the extended mission) lead to the result that in the elastic case, where the Love number is real, k2 will be determined with a one-sigma accuracy of 0.1. In the viscoelastic case, where k2 is complex, the real and imaginary parts of k2 will be determined with one sigma accuracies of 0.138 and 0.115, respectively. Ocean and oceanless models that include a viscoelastic rheology are built. In the viscoelastic case, there is a 93% probability to correctly predict the presence or absence of an ocean; this probability improves to 97% in the elastic case.  相似文献   

18.
It has been suggested that the present release rate of methane to the Martian atmosphere could be the result of serpentinization in the deep subsurface, followed by the conversion of H2 to CH4 in a CO2-rich fluid. Making this assumption, we show that the cryosphere could act as a buffer storing, under the form of micron-size methane clathrate particles, the methane delivered from below by hydrothermal fluids and progressively releasing it to the atmosphere at the top. From an extrapolation of the present CH4 release rate back to the past, we calculate that up to several hundred millibars (~200–2000 mbar) of CO2, resulting from the oxidation of the released CH4, in addition to the volcanic supply (~400 mbar), should have accumulated in the atmosphere in the absence of a CO2 sink. We reassess the capability of escape to have removed CO2 from the atmosphere by C non-thermal escape and show that it is not significant. We suggest that atmospheric carbon is recycled to the crust through an active subsurface hydrological system, and precipitates as carbonates within the crust. During episodic periods of magmatic activity, these carbonates are decomposed to CO2 dissolved in running water, and CO2 can react with H2 formed by serpentinization to build CH4. CH4 is then buffered in the subsurface cryosphere, above the water table, and finally released to the atmosphere, before being recycled to the subsurface hydrological system, and converted back to carbonates. We propose a typical evolution curve of the CO2 pressure since the late Noachian based on our hypothesis. Contrary to the steady state carbon cycle at work on Earth, a progressive damping of the carbon cycle occurs on Mars due to the absence of plate tectonics and the progressive cooling of the planet.  相似文献   

19.
The latitudinal variation of Saturn’s tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet’s nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn’s cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn’s NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck).  相似文献   

20.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号