首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streambank retreat can be a significant contributor to total sediment and nutrient loading to streams. Process-based bank stability models, such as the Bank Stability and Toe Erosion Model (BSTEM), have been used to determine critical factors affecting streambank erosion and failure such as riparian vegetation and to estimate retreat rates over time. BSTEM has been successfully applied on a number of cohesive streambanks, but less so on composite banks consisting of both cohesive and noncohesive soils in highly sinuous streams. Composite streambanks can exhibit rapid and episodic bank retreat. The objectives of this research were twofold: (i) develop and apply simplified procedures for estimating root cohesion based on above- and below-ground biomass estimates and (ii) systematically apply BSTEM to a series of 10 composite streambanks distributed along the Barren Fork Creek in eastern Oklahoma to assess model sensitivity to root cohesion and model performance in predicting retreat. This research aimed to document the influence of riparian conservation practices on bank retreat rates and evaluated simplistic methods for incorporating such practices into such process-based models. Sites modeled included historically unprotected sites with no riparian vegetation and historically protected sites with riparian vegetation present during all or part of the 2003 to 2010 study period. The lateral retreat ranged from 4.1 to 74.8 m across the 10 sites and was largest at the historically unprotected sites in which retreat averaged 49.2 m. Protected sites had less bank retreat but with more variability in retreat rates per year. With calibration focused on the erodibility parameters, the model was able to match both the observed total amount of retreat as well as the timing of retreat at both the protected and unprotected sites as derived from aerial imagery. During calibration BSTEM was not sensitive to the specific value of the soil cohesion or the additional soil cohesion added due to roots for the cohesive topsoil layer, suggesting that the proposed simplified techniques could be used to estimate root cohesion values. The BSTEM modeling also provided an advantageous assessment tool for evaluating retreat rates compared to in situ bank retreat measurements due to the magnitude and episodic nature of streambank erosion and failures. Process-based models, such as BSTEM, may be necessary to incrementally model bank retreat in order to quantify actual streambank retreat rates and understand mechanisms of failure for the design of stabilization projects.  相似文献   

2.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Cross-sections were surveyed at straight reaches of 16 sandbed streams in the midwestern U.S. Two stratigraphic horizons are found in the banks at each site, an upper cohesive unit usually composed of silt and clay, and a lower unit composed of sand. Bank erosion on these rivers occurs when the upper cohesive unit is undercut by scour at bends. The overhanging cohesive block fails by toppling forward into the channel. During failure, the soil is primarily in tension rather than compression or shear. Analysis of this failure mechanism leads to a field method for measuring the tensile strength of riverbanks. Measured values of the tensile strength are not correlated with the channel geometry. Thus, the erodibility of the cohesive bank sediments does not influence the geometry of the rivers studied.  相似文献   

4.
Burrowing into riverbanks by animals transfers sediment directly into river channels and has been hypothesised to accelerate bank erosion and promote mass failure. A field monitoring study on two UK rivers invaded by signal crayfish (Pacifastacus leniusculus) assessed the impact of burrowing on bank erosion processes. Erosion pins were installed in 17 riverbanks across a gradient of crayfish burrow densities and monitored for 22 months. Bank retreat increased significantly with crayfish burrow density. At the bank scale (<6 m river length), high crayfish burrow densities were associated with accelerated bank retreat of up to 253% and more than a doubling of the area of bank collapse compared with banks without burrows. Direct sediment supply by burrowing activity contributed 0.2% and 0.6% of total sediment at the reach (1.1 km) and local bank (<6 m) scales. However, accelerated bank retreat caused by burrows contributed 12.2% and 29.8% of the total sediment supply at the reach and bank scales. Together, burrowing and the associated acceleration of retreat and collapse supplied an additional 25.4 t km−1 a−1 of floodplain sediments at one site, demonstrating the substantial impact that signal crayfish can have on fine sediment supply. For the first time, an empirical relation linking animal burrow characteristics to riverbank retreat is presented. The study adds to a small number of sediment budget studies that compare sediment fluxes driven by biotic and abiotic energy but is unique in isolating and measuring the substantial interactive effect of the acceleration of abiotic bank erosion facilitated by biotic activity. Biotic energy expended through burrowing represents an energy surcharge to the river system that can augment sediment erosion by geophysical mechanisms.  相似文献   

5.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Bankfull discharge was identified in some 30 gravel-bed rivers representing in total c. 40 gauging stations. The catchment sizes cary from 4km2 to nearly 2700km2. Bankfull discharge value increases with basin size. In the case of gravel-bed rivers developed on an impermeable substratum, the following equation emerges: Qb=0·087 A1·044. Bankfull discharge recurrence interval was determined by fitting maximum annual floods (Ta) into Gumbel's distribution and then using the partial duration series (Tp) in this same distribution. Recurrence interval is below 0·7 years (Tp) for small pebble-bed rivers developed on an impermeable substratum; it reaches 1·1 to 1·5 years when the catchment size of these rivers exceeds 250km2. Rivers incised in the soft schists of the Famenne show larger channel capacity at bankfull stage, a small width/depth ratio and thus higher recurrence intervals (1·4–5·3 years with Ta and 1–4·4 years with Tp). Baseflow-dominated gravel-bed streams and sandy or silty rivers experience less frequent bankfull discharges, with a recurrence interval higher than 2 or even 3 years (Tp). © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

8.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The stability of a river bank depends on the balance of forces, motive and resistive, associated with the most critical mechanism of failure. Many mechanisms are possible and the likelihood of failure occurring by any particular one depends on the size, geometry and structure of the bank, the engineering properties of the bank material, the hydraulics of flow in the adjacent channel and climatic conditions. Rivers flowing through alluvial deposits often have a composite structure of cohesionless sand and gravel overlain by cohesive silt/clay. Bank erosion occurs by fluvial entrainment of material from the lower, cohesionless bank at a much higher rate than material from the upper, cohesive bank. This leads to undermining that produces cantilevers of cohesive material. Upper bank retreat takes place predominantly by the failure of these cantilevers. Three mechanisms of failure have been identified: shear, beam and tensile failure. The stability of a cantilever may be analysed using static equilibrium and beam theory, and dimensionless charts for cantilever stability constructed. Application of the charts requires only a few simple measurements of cantilever geometry and soil properties. In this analysis the effects of cracks and fissures in the soil must be taken into account. These cracks seriously weaken the soil and can invalidate a stability analysis by affecting the shape of the failure surface. Following mechanical failure, blocks of soil must be removed from the basal area by fluvial entrainment if rapid undermining and cantilever generation are to continue. Hence, the rate of bank retreat is fluvially controlled, even though the mechanism of failure of the upper bank is not directly fluvial in nature. This cycle of bank erosion: undermining, cantilever failure and fluvial scour of the toe, operates over several flood events and has important implications for river engineering, channel changes, and the movement of sediment through fluvial systems.  相似文献   

10.
River water quality models usually apply the Fischer equation to determine the longitudinal dispersion coefficient (Dx) in solving the advection–dispersion equation (ADE). Recently, more accurate formulas have been introduced to determine Dx in rivers, which could strongly affect the accuracy of the ADE results. A numerical modelling-based approach is presented to evaluate the performance of various Dx formulas using the ADE. This approach consists of a finite difference approximation of the ADE, a MATLAB code and a MS Excel interface; it was tested against the analytical ADE solution and demonstrated using eight well-known Dx formulas and tracer study data for the Chattahoochee River (USA), the Severn (UK) and the Athabasca (Canada). The results show that Dx has an important effect on tracer concentrations simulated with the ADE. Comparison between the simulated and measured concentrations confirms the appropriate performance of Zeng and Huai’s formula for Dx estimation. Use of the newly proposed equations for Dx estimation could enhance the accuracy of solving the ADE.  相似文献   

11.
Plants interact with and modify the processes of riverbank erosion by altering bank hydrology, flow hydraulics and bank geotechnical properties. The physically based slope stability model GWEDGEM was used to assess how changes in bank geotechnical properties due to the roots of native Australian riparian trees affected the stability of bank sections surveyed along the Latrobe River. Modelling bank stability against mass failure with and without the reinforcing effects of River Red Gum (Eucalyptus camaldulensis) or Swamp Paperbark (Melaleuca ericifolia) indicates that root reinforcement of the bank substrate provides high levels of bank protection. The model indicates that the addition of root reinforcement to an otherwise unstable bank section can raise the factor of safety (F s) from F s = 1·0 up to about F s = 1·6. The addition of roots to riverbanks improves stability even under worst‐case hydrological conditions and is apparent over a range of bank geometries, varying with tree position. Trees growing close to potential failure plane locations, either low on the bank or on the floodplain, realize the greatest bank reinforcement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Numerous processes may instigate bank retreat and the consequent collection of failed cohesive materials at the bank toe. Cohesion between the failed material and the substrate can provide additional strength to resist direct fluvial entrainment. Failed, cohesive material can act as a form of natural bank‐toe protection by consuming and diverting flow energy that may otherwise be used to further scour the basal zone of incising channels. Investigations in Goodwin Creek, Mississippi, have revealed the existence of apparent cohesion between failed, cohesive blocks and their underlying surface. The method used to assess this cohesion involved a pulley system mounted on a tripod and supporting a load cell. Mean and maximum apparent‐cohesion values of 1·08 kPa and 2·65 kPa, respectively, were measured in this way, identifying a source that bonds blocks to the underlying surface. Cohesion values and types vary spatially and temporally. Tensiometric tests beneath blocks suggest that cohesion resulting from matric suction alone may be as much as 3·5 kPa in summer and 1·8 kPa in winter. Apparent cohesion is believed to have been sufficient to help prevent removal of the largest blocks by a peak flow of 66·4m3&sol;s on 23 September 1997. Maximum excess shear stress required to entrain a D75 block can be augmented by as much as 97% by the presence of apparent cohesion at the block–substrate interface when compared with a condition with zero apparent cohesion at the block underside. Given these findings, it is no longer sufficient to estimate block entrainment in the basal area from block size or bed roughness alone, as in a Shields‐type approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The detachment capacity (Dc) and transport capacity (Tc) of overland flow are important variables in the assessment of soil erosion. They determine respectively the lower and upper limit of sediment transport by runoff and therefore control detachment and deposition pro‐cesses. In this study, the detachment and transport capacity of runoff was investigated by rainfall simulations and overland flow experiments on small field plots. On the bare field plots, it was found that Tc was strongly related to total runoff discharge. This was also observed for the plots covered by maize residues, but Tc was less due to the lower runoff velocity. A simple regression equation was derived to estimate Tc for both bare and covered soil. Comparing our observations with Tc equations mentioned in the literature revealed that Tc equations based on laboratory experiments overestimated, on average, our measurements. Although Tc can be assessed more easily in laboratory experiments, the applicability of the results to field conditions remains questionable. Detachment by runoff was also related to total runoff discharge. The Dc values were, however, 4–50 times smaller than the Tc at corresponding high and low runoff discharge. This indicates that detachment by runoff constitutes only part of the transported sediment. Interrill erosion supplies an important additional amount of sediment. In this study, however, only sealed soils were considered. In the case of freshly tilled, loose soils, the Dc of runoff may be larger, resulting in a larger contribution to the total soil loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Prediction of concentrated flow width in ephemeral gully channels   总被引:3,自引:0,他引:3  
Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s?1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s?1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10?4m3s?1 < Q < 0·1 m3s?1). Comparing WQ relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed WQ equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the WQ approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates the dynamics of soil armouring as a result of fluvial erosion for a non‐cohesive sandy gravel spoil from the Ranger Mine, Australia, and a cohesive silt loam spoil from the Northparkes Mine, Australia, using a model for hillslope soil armouring. These long term predictions concentrate on the temporal and spatial changes of the spoil grading and erosion over 100–200 years for the flat cap regions (1–2%) and steep batter edges (10–30%) typically encountered on waste rock dumps. The existence of a significant rock fragment fraction in the Ranger spoil means that it armours readily, while Northparkes does not. For Ranger the waste rock showed reductions in (1) cumulative erosion of up to 81% from that obtained by extrapolating the initial erosion rate out 100 years and (2) the erosion/year by more than 10‐fold. For Northparkes reductions were less marked, with the maximum reduction in erosion/year being 37% after 200 years. For Ranger the reductions were greatest and fastest for intermediate gradient hillslopes. For the steepest hillslopes the armouring decreased because the flow shear stresses were large enough to mobilize all material in the armour layer. Model uncertainty was assessed with probabilistic confidence limits demonstrating that these erodibility reductions were statistically significant. A commonly used hillslope erosion model (sediment flux = β1 discharge m1 slope n1) was fitted to these predictions. The erodibility, β1, and m1 decreased with time, which was consistent with our physical intuition about armouring. At Ranger the parameter m1 asymptoted to 1·5–1·6 while at Northparkes it asymptoted to 1·2–1·3. At Ranger transient spatial trends in armouring led to a short term (50–200 years in the future) reduction in n1, to below zero under certain circumstances, recovering to an asymptote of about 0·5–1. At Northparkes n1 asymptoted to about 0·6, with no negative transients predicted. The m1 and n1 parameters predicted for Ranger were shown to be consistent with field data from a 10‐year‐old armoured hillslope and consistent with published relationships between erodibility and rock content for natural hillslopes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
三峡工程运用后长江中游荆江河段河床持续冲刷,局部河段崩岸频发,影响河道内悬沙输移与河床形态调整.本研究采用实测长程河道地形及固定断面地形资料,确定了2002-2018年荆江河段的主要崩岸区域,估算了崩岸土体的泥沙总量,进而定量分析了河岸崩退对河床调整的影响.计算结果表明:荆江段累计河岸崩退体积约为2.0亿m3,约占该河...  相似文献   

18.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

20.
Abstract

A detailed investigation of the behaviour of various hydraulic parameters, using data from rivers in Greece, was conducted in order to explore the universality of features that many natural streams are believed to have in common. Analysis of vertical profiles of temporal mean of horizontal velocities (u) in the longitudinal (river flow) direction and of transverse profiles of depth-mean longitudinal velocities (U) estimated from these vertical profiles, measured at 232 cross-sections of several rivers in Greece, provided valuable information: on the distribution of local roughness coefficients (ni ) along the wetted perimeter of the cross-sections examined; on the shape of u profiles; on the ratio of maximum to mean cross-sectional velocity, Vmax/Vm , and its relation to a dimensionless entropy parameter, M; on the shape of U profiles; and on the normalized intensity, r, of the spatial departure of u velocities from Vm . The similarities among the quantities (u, U, n, Vmax/Vm , M, r) analysed in this study and in pertinent literature reveal that the rivers examined exhibit many of the basic features, of rather universal character, shown by other rivers (all over the world) having different geometric and/or other characteristics (aspect ratios, bottom roughness, flow kinematics, etc.). Corresponding differences are also described and explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号