首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The problem of predicting the response of hysteretic yielding systems under random excitation is considered. The paper presents a linearization scheme which is motivated by extensive simulation studies of the bilinear hysteretic system. The response process is decomposed into a low frequency drift component and a component with a frequency near the linearized natural frequency of the system. Effective stiffness and damping parameters are presented. The accuracy of the various steps of the scheme is examined. The approach gives results which are in close agreement with simulation estimates even for large-system non-linearity.  相似文献   

2.
A simple procedure for identifying hysteretic properties of seismically isolated bridges from full‐scale quick‐release tests is presented in this paper. An analytical solution for the quick‐release response of a SDOF system with a bilinear spring is derived. Based on the solution, some characteristics of such systems are obtained. A time domain optimization method is employed to identify the hysteretic properties of the lead–rubber bearings installed in seismically isolated bridges. The total damping effects of the isolation system are expressed as a combination of the rate‐independent (hysteretic) damping and the linear viscous damping. The Menegotto–Pinto (MP) model and bilinear model are used to represent the force–displacement relation of the lead–rubber bearings. In both the longitudinal and transverse directions the bridges have been idealized as single degree of freedom (SDOF) systems. Time histories recorded from the field quick‐release tests on two bridges are used for the examples presented herein. The hysteretic loops of the isolators obtained from laboratory tests are compared with those obtained using the optimization method, and they agree well. In conclusion, the procedure shown in this paper can be used to identify the essential in situ hysteretic characteristics of isolation bearings from quick‐release field testing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
An analysis is made of the steady-state response of a bilinear hysteretic structure supported on the surface of a viscoelastic half-space. The method of equivalent linearization is used to solve the equations of motion, and simplified approximate formulas are obtained for the fundamental resonant frequency of the system and for an effective critical damping ratio. Numerical results indicate that for non-linear hysteretic structures compliance of the soil foundation may lead to larger displacements than would occur if the base were rigid. This behaviour differs from that generally observed for linear systems, for which the effect of soil-structure interaction is to reduce the rigid-base response.  相似文献   

4.
The maximum ductility demand and the edge displacement of a simple single mass eccentric model is evaluated when the system is subjected to ground motions represented by the El Centro 1940 and Taft 1952 earthquake records. The resisting elements are taken to be bilinear hysteretic. It is found that the ductility demand depends to a great extent on the energy content of the ground motions, particularly in the period range beyond the elastic period of the system. Unlike elastic response, the coincidence of uncoupled torsional and lateral frequencies does not lead to exceptionally high inelastic response. An increase by a factor of two in ductility demand is not uncommon for a system with large eccentricity as compared to a symmetrical system. Therefore, system eccentricity has a larger effect on ductility demand than earlier studies indicated. Using Clough's model to allow for stiffness degradation effect, results are found to be within 20 per cent of those calculated based on the bilinear hysteretic model.  相似文献   

5.
The effect of stiffness degradation in reinforced concrete structural members on the inelastic response of multistorey buildings to earthquakes is investigated. In particular, the following question is examined. How do the ductility requirements for multistorey systems with degrading stiffness behaviour compare with those for structures with ordinary bilinear hysteretic property? Inelastic dynamic responses of two idealized multistorey buildings, one having a long and the other a relatively short fundamental period, to an ensemble of twenty simulated earthquakes representative of moderately intense ground motions in California at moderate epicentral distances on firm ground, are analysed for ordinary bilinear hysteretic behaviour and for bilinear hysteretic behaviour with stiffness degradation property. The conclusions deduced from the results of this investigation include the following (1) It is, in general, not possible to predict the maximum response of a degrading stiffness system from results for the corresponding ordinary bilinear system (2) The differences in ductility requirements due to stiffness degradation are generally smaller than those associated with probabilistic variability from one ground motion to another (3) Stiffness degradation has little influence on the ductility requirements for flexible buildings, but it leads to increased ductility requirements for stiff buildings.  相似文献   

6.
The best known model for numerically simulating the hysteretic behavior of various structural components is the bilinear hysteretic system. There are two possible mechanical formulations that correspond to the same bilinear model from a mathematical viewpoint. The first one consists of a linear elastic spring connected in series with a parallel system comprising a plastic slider and a linear elastic spring, while the second one comprises a linear elastic spring connected in parallel with an elastic-perfectly plastic system. However, the bilinear hysteretic model is unable to describe either softening or hardening effects in these components. In order to account for this, the bilinear model is extended to a trilinear one. Thus, two trilinear hysteretic models are developed and numerically tested, and the analysis shows that both exhibit three plastic phases. More specifically, the first system exhibits one elastic phase, while the second one exhibits two elastic phases according to the level of strain amplitude. Next, the change of slope between the plastic phases in unloading does not occur at the same displacement level in the two models. Furthermore, the dissipated energy per cycle in the first trilinear model, as proven mathematically and explained physically, decreases in the case of hardening and increases in the case of softening, while in the second trilinear model the dissipated energy per cycle remains unchanged, as is the case with the bilinear model. Numerical examples are presented to quantify the aforementioned observations made in reference to the mechanical behavior of the two trilinear hysteretic models. Finally, a set of cyclic shear tests over a wide range of strain amplitudes on a high damping rubber bearing is used in the parameter identification of the two different systems, namely (a) trilinear hysteretic models of the first type connected in parallel, and (b) trilinear hysteretic models of the second type also connected in parallel. The results show that the complex nonlinear shear behavior of high damping rubber bearings can be correctly simulated by a parallel system which consists of only one component, namely the trilinear hysteretic system of the first type. The second parallel system was not able to describe the enlargement of the dissipated hysteresis area for large strain amplitudes.  相似文献   

7.
The Millikan Library on the campus of the California Institute of Technology was strongly shaken during the San Fernando earthquake of 9 February 1971. The building was not damaged structurally, but the observed E-W response of the building showed a fundamental period of about 1.0 sec, significantly longer than the 0.66 sec observed in pre-earthquake vibration tests. In this study, the response of the fundamental mode was treated as that of a single-degree-of-freedom hysteretic structure, and four simple models, two stationary and two with changing properties, were examined to see if they could describe the observed response. It was found that an equivalent linear model and a bilinear hysteretic model both could match the response, provided their properties were changed during the earthquake. (Four changes were used.) A linear model with constant properties and a stationary, bilinear hysteretic model did not give nearly as good agreement as the non-stationary models. The results indicated, in general, a degrading of the stiffness and energy dissipation capacity of the building, with the suggestion that the changes were sudden rather than gradual.  相似文献   

8.
The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system.By using the particle swarm optimization technique,a new statistical approach is developed to determine the key parameters of such an equivalent linear system over a 2D space of period and damping ratio.The new optimization criterion realizes the consideration of the structural safety margin in the equivalent linearization method when applied to the performance-based seismic design/evaluation of engineering structures.As an application,equations for equivalent system parameters of both bilinear hysteretic and stiffness degrading single-degree-offreedom systems are deduced with the assumption of a constant ductility ratio.Error analyses are also performed to validate the proposed approach.  相似文献   

9.
10.
A non-Gaussian closure scheme based on the Edgeworth expansion of the probability density function is used to study the response of a hysteretic structure under random parametric excitation. The system considered consists of a weightless mass supporting a concentrated mass and it is subjected to the vertical and horizontal components of the ground acceleration modeled as nonstationary Gaussian white noise processes. The material of the structure exhibits bilinear hysteretic behaviour. The equation governing the motion of the system is transformed into an Itô stochastic differential equation. A set of ordinary differential equations governing the response statistics are obtained. These form an infinite hierarchy of equations which must be truncated in order to solve for moments of any order. The Edgeworth expansion of the joint density is used to truncate this infinite hierarchy. Such a closure scheme appears desirable since for hysteretic systems an explicit expression of the probability density is required. A frequently used closure scheme based on Gaussian assumption underestimates the response. The non-Gaussian density can be used in reliability studies.  相似文献   

11.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A simplified analysis procedure for the non-linear hysteretic earthquake-response of earth dams is presented. The dam is modelled as a one-dimensional hysteretic shear-wedge subjected to base excitation. The hysteretic stress-strain behaviour of the dam materials is modelled by using elasto-plastic constitutive equations based on multi-surface kinematic plasticity theory. The method is based on a Galerkin formulation of the equations of motion in which the solution is expanded using eigenmodes of the linearized problem defined over the spatial domain occupied by the dam. The technique is applied to analyse the non-linear dynamic response of an earth dam subject to two very different input ground motions. The following investigations are presented: (i) comparison between the results obtained using two soil models depicting different nonlinear properties, (ii) comparison between the results of the one-mode and the multi-mode solution expansions, (iii) comparison with the results obtained through an elaborate finite element representation of the dam, and finally, (iv) comparison with the results obtained through the Makdisi-Seed11 iterative procedure for earth dam analysis. The comparisons show that the proposed technique can be used to determine adequately the transient earthquake response of long earth dams. Furthermore, the efficiency and low computational cost make the technique very attractive; it can easily and systematically be extended to two- and three-dimensional calculations of earth dam response.  相似文献   

13.
以HDR隔震梁桥多自由度(MDOF)模型和等效双线性单自由度(SDOF)模型为研究对象,以典型近场地震动作为输入,研究HDR支座双向耦合效应对HDR隔震梁桥地震响应的影响。研究结果表明:不考虑双向耦合效应的HDR支座滞回曲线呈典型双线性;考虑双向耦合效应的HDR支座滞回曲线面积小于不考虑双向耦合效应的HDR支座滞回曲线面积。不考虑双向耦合效应的顺桥向HDR支座位移峰值db大于考虑双向耦合效应时,但横桥向的结果相反。近场地震作用下,对梁桥进行HDR支座隔震设计时,忽略双向耦合效应计算得到的墩底剪力峰值和弯矩峰值均偏于保守。可忽略HDR支座双向耦合效应对HDR隔震梁桥近场地震能量的影响。  相似文献   

14.
The stochastic equivalent linearization method has been significantly improved during the last two decades, leading to rather efficient and accurate estimates of the first- and second-order statistical moments of the random response process, even when the non-stationarity of the excitation and the hysteretic degrading non-linearities of the structural system are taken into account. The purpose of this paper, apart from presenting a short survey of the most relevant methods developed in this area, indicating their main restrictions, is to call attention to the remarkable possibilities of the equivalent linearization technique as the most powerful approximate method to deal with the seismic response analysis of MDOF non-linear building structures, deserving to be considered by the engineering codes in the near future as an appropriate formulation for that purpose. To illustrate the real interest of this method, several applications concerning a simple shear-building structural model are presented, considering columns with non-linear restoring forces, either bilinear elastic or hysteretic, and the results obtained by some computer programs developed on the basis of the equivalent linearization technique are compared with the estimates achieved by digital simulation in order to check the level of accuracy. Moreover, these results are also used to evaluate limit violation (failure) probabilities, based on the vulnerability function concept.  相似文献   

15.
A semi-analytical forward-difference Monte Carlo simulation procedure is proposed for the determination of the lower order statistical moments and the joint probability density function of the stochastic response of hysteretic non-linear multi-degree-of-freedom structural systems subject to nonstationary gaussian white noise excitation, as an alternative to conventional direct simulation methods. The method generalizes the so-called Ermak-Allen algorithm developed for simulation applications in molecular dynamics to structural hysteretic systems. The proposed simulation procedure rely on an assumption of local gaussianity during each time step. This assumption is tantamount to various linearizations of the equations of motion. The procedure then applies an analytical convolution of the excitation process, hereby reducing the generation of stochastic processes and numerical integration to the generation of random vectors only. Such a treatment offers higher rates of convergence, faster speed and higher accuracy. The procedure has been compared to the direct Monte Carlo simulation procedure, which uses a fourth-order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process. The considered system was a multi-dimenensional hysteretic shear frame, where the constitutive equation of the hysteretic shear forces are described by a bilinear hysteretic model. The comparisons show that significant savings in computer time and accuracy can be achieved.  相似文献   

16.
Two storey bilinear hysteretic structures have been studied with a view to exploring the possibility of using the dynamic vibration absorber concept in earthquake-resistant design. The response of the lower storey has been optimized for the Taft 1952, S69°E accelerogram with reference to parameters such as frequency ratio, yield strength ratio and mass ratio. The influence of viscous damping has also been examined.  相似文献   

17.
A stiffening system is a system that increases its stiffness as it goes under large displacements. Such behavioural characteristic can result from constitutive behaviour or at the structural level often from closure of gaps between various components (sub‐systems) of the structure. An example of the latter situation is multi‐span simply supported (MSSS) bridges under horizontal earthquake ground motion. Unlike softening systems, stiffening systems have not been studied. In addition to the need for more understanding of the seismic response of stiffening systems, there is a need to develop response spectrum that can be used in design. Several parameters including gap size and ratios of sub‐systems stiffness, strength, and mass control the behaviour of a stiffening system. In this study, a simplified stiffening model is developed and over 367 000 cases are analysed to investigate the nonlinear stiffening behaviour and pounding. Parameters considered also include ground motion characteristic. Results are evaluated and compared in terms of displacement and dissipated hysteretic energy. Parameter study results show that, on average, the displacement response is lower for stiffening systems, however, they dissipates higher hysteretic energy, due to higher yield cycles and yield excursions, and can possibly sustain more damage than a bilinear, elastic–plastic system. Using parameter study database, design response spectrum for stiffening systems is also proposed and its practical application is demonstrated through its application to an MSSS bridge. Results of this study goes beyond MSSS bridges and will have application for many structural systems where response is characterized by a stiffening behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Hysteretic energy spectrum and damage control   总被引:1,自引:0,他引:1  
The inelastic response of single‐degree‐of‐freedom (SDOF) systems subjected to earthquake motions is studied and a method to derive hysteretic energy dissipation spectra is proposed. The amount of energy dissipated through inelastic deformation combined with other response parameters allow the estimation of the required deformation capacity to avoid collapse for a given design earthquake. In the first part of the study, a detailed analysis of correlation between energy and ground motion intensity indices is carried out to identify the indices to be used as scaling parameters and base line of the energy dissipation spectrum. The response of elastoplastic, bilinear, and stiffness degrading systems with 5 per cent damping, subjected to a world‐wide ensemble of 52 earthquake records is considered. The statistical analysis of the response data provides the factors for constructing the energy dissipation spectrum as well as the Newmark–Hall inelastic spectra. The combination of these spectra allows the estimation of the ultimate deformation capacity required to survive the design earthquake, capacity that can also be presented in spectral form as an example shows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A recently proposed method for the computation of the gravitational effect due to the topographic masses defined by a Digital Elevation Model (DEM) involves the representation of the surface relief by means of parts of bilinear surfaces. The so-called bilinear method delivers eventually the mathematical model for the gravitational attraction of a right rectangular prism, whose top is modeled by a bilinear surface. Scope of the paper is to assess the new method by conducting numerical tests using both real and synthetic data. The performance of the bilinear method is evaluated in terms of its computational efficiency as well as its precision by comparing it with other analytical methods available for the practical evaluation of gravitational terrain effects. The techniques considered for the assessment of the bilinear approximation are the vastly applied right rectangular prism method and the polyhedral modeling, a less popular but extremely flexible approach based on the closed expression for the gravity field of an arbitrarily shaped mass distribution defined by planar faces. The different geometric modeling of the topographic relief produces discrepancies to the gravitational attraction of up to several mGal. Thus the choice for the geometric representation of the terrain plays a fundamental role to the numerical computation of potential field quantities especially in the critical region surrounding the computation point.  相似文献   

20.
Timber structures are characterized by a pinching phenomenon that leads to reduced dissipative capability. A few hysteretic models have been proposed to simulate the mechanical behavior of timber structures, among which the one composed of a bilinear element and a slip element in parallel has been popular in practice. Based on this model, this paper expands on the existing seismic control design methodology to determine the capacity of hysteretic dampers for multi-story timber structures. The equivalent linearization method for a single-degree-of-freedom timber structure with added hysteretic damper is established and is verified through nonlinear timber history analysis over a wide range of structural parameters. The design formulas for determining the damper capacity for a multi-degree-of-freedom system are derived, based on the concept of adjusting the distribution of equivalent stiffness of structure. The seismic control design is applied to many buildings with randomly generated parameters and the effectiveness is confirmed through a nonlinear time history analysis with four sets of seismic excitations. An extended study has shown that the shear force pattern plays an important role in the seismic control design results and thus the performance of structures. The effectiveness of the control of residual deformations by adding dampers is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号