首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nine, possibly ten, stones from northwestern Missouri are known as the Faucett meteorite. These stones are finds, but may be fragments of a large fireball seen in the area in 1907. The meteorite is an olivine-bronzite chondrite (H4) containing approximately 31% chondrules and 69% matrix. Modal analysis gives: olivine 43%, orthopyroxene 28.3%, oligoclase 5.9%, glass 1.2%, metallic grains (both nickel-iron and troilite) 19.7%, other minerals and unidentified grains 2.0%. The chemical analysis is typical of modern analyses of H-group chondrites with a total iron value of 26.59 weight percent.  相似文献   

2.
The Ella Island, Greenland, meteorite was found in August of 1971. Electron microprobe study of the meteorite revealed it to contain olivine, low-calcium pyroxene, high-calcium pyroxene, plagioclase, kamacite, taenite, chromian-hercynite and troilite. On the basis of fayalite and ferrosilite content, poorly-defined chondrules, absence of glass in chondrules, presence of well-developed feldspar in the matrix and chondrules, and degree of recrystallization of the matrix, the Ella Island meteorite is classified as an L-6 chondrite.  相似文献   

3.
The Ko?ice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Ko?ice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan‐like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black‐gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe‐Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase‐like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Ko?ice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Ko?ice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Ko?ice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron‐microprobe analysis (EMPA) with focused and defocused electron beam, whole‐rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration‐free laser induced breakdown spectroscopy (CF‐LIBS) were used to characterize the Ko?ice fragments. The results provide further evidence that whole‐rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF‐LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.  相似文献   

4.
The Gujargaon meteorite was observed to fall on a cotton field at Gujargaon in Dewas district, Madhya Pradesh, India, on the afternoon of the 4th of September, 1982. It is an oriented stone with a saucer-shaped front and regmaglypted rear with surfaces of more than one generation, and is entirely covered by fusion crust. Gujargaon is an H5 chondrite with rare chondrules integrated with the matrix. Intense fracturing with fractures filled by glassy veins, and undulose extinction and deformation-twin lamellae in troilite bear evidences of shock. Compared to average H-group chondrites Gujargaon appears to have higher contents of SiO2and normative pyroxene.  相似文献   

5.
Varre-Sai, the most recent Brazilian meteorite fall, on June 19th, 2010 at Varre-Sai, in Rio de Janeiro State, Brazil (20°51??41??S; 41°44??.80??W). At least eight masses (total ~3.5?kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour with a few dark shock veins. Five thin polished and etched sections were prepared from a slice weighing 35?g on deposit at the National Museum/UFRJ. It consists mostly of chondrules ranging in size from 0.35 to ~2.2?mm, and chondrule fragments enclosed in a crystalline matrix. The matrix consists of tiny isolated subhedral and anhedral crystals and opaque minerals that are intergrown with broken chondrules. The chondritic texture is poorly defined with chondrule textures that vary from non-porphyritic to porphyritic ones. The essential minerals are olivine (Fa25±0.2) and low-Ca pyroxene (Fa21.66±0.2Wo1.4). Accessory minerals are plagioclase, apatite, Fe?CNi metal phases, troilite, chromite and magnetite. M?ssbauer spectroscopy analysis confirms that the mineral phases are olivine, pyroxene, troilite and kamacite/taenite. Chemical data indicate that Varre-Sai is a member of the low iron L chondrite group. The observed texture and mineral phases led us to classify Varre-Sai as an equilibrated petrologic type 5. The shock features of the minerals (undulatory extinction, planar structure and numerous cracks), as well as plagioclase partial or totally transformed to maskelynite, suggest a shock stage S4. Also, some post-impact metamorphic processes could be inferred from the meta-sulfide conjoint grains that show complex mixtures of kamacite?Ctaenite?Ctetrataenite and troilite. The occurrence of veins crosscutting the studied sections indicates that Varre-Sai was affected by a late fracturing event. Sealing of these fractures must have been a fast process, as shown by troilite globule textures pointing towards rapid solidification. The meteorite name was approved by the Nomenclature Committee of the Meteoritical Society (Meteoritic Bulletin, no 99).  相似文献   

6.
Abstract Melnikovo is a relatively unweathered 545.6-g LL6 chondrite that was found in 1983. Only a few poorly defined chondrules are discernable in the examined sections; two of these are enriched in chromite. The meteorite contains olivine (Fa27,8), low-Ca pyroxene (Fs24,4), plagioclase, rare clinopyroxene, chlorapatite, merrillite and opaque minerals, which have a modal abundance (in wt%) of troilite (3.9%), kamacite (0.4%), taenite plus tetrataenite (0.7%), chromite (0.8%), and trace amounts of ilmenite and Mn-ilmenite. The meteorite appears unbrecciated on a centimeter scale.  相似文献   

7.
Abstract— Roosevelt County (RC) 075 was recovered in 1990 as a single 258-gram stone. Classification of this meteorite is complicated by its highly unequilibrated nature and its severe terrestrial weathering, but we favor H classification. This is supported by O isotopes and estimates of the original Fe, Ni metal content. The O isotopic composition is similar to that of a number of reduced ordinary chondrites (e.g., Cerro los Calvos, Willaroy), although RC 075 exhibits no evidence of reduced mineral compositions. Chondrule diameters are consistent with classification as an L chondrite, but large uncertainties in chondrule diameters of RC 075 and poorly constrained means of H, L and LL chondrites prevent use of this parameter for reliable classification. Other parameters are compromised by severe weathering (e.g., siderophile element abundances) or unsuitable for discrimination between unequilibrated H, L and LL chondrites (e.g., Co in kamacite, δ13C). Petrologic subtype 3.2± 0.1 is suggested by the degree of olivine heterogeneity, the compositions of chondrule olivines, the thermoluminescence sensitivity, the abundances and types of chondrules mapped on cathodoluminescence mosaics, and the amount of presolar SiC. The meteorite is very weakly shocked (S2), with some chondrules essentially unshocked and, thus, is classified as an H3.2(S2) chondrite. Weathering is evident by a LREE enrichment due to clay contamination, reduced levels of many siderophile elements, the almost total loss of Fe, Ni metal and troilite, and the reduced concentrations of noble gases. Some components of the meteorite (e.g., type IA chondrules, SiC) appear to preserve their nebular states, with little modification from thermal metamorphism. We conclude that RC 075 is the most unequilibrated H chondrite yet recovered and may provide additional insights into the origin of primitive materials in the solar nebula.  相似文献   

8.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   

9.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   

10.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

11.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   

12.
Abstract— A newly fallen Sudanese meteorite named Al Zarnkh was investigated using room and liquid nitrogen temperature Mössbauer measurements, X‐ray diffraction (XRD), and electron probe microanalysis (EPMA) in conjunction with energy dispersive X‐ray microscopy. The Mössbauer spectra exhibited strong paramagnetic doublets with magnetic sextets. The doublets are assigned to olivine and pyroxene, while the magnetic sextets are assigned to troilite and kamacite. Based on microprobe analyses and textural studies, olivine is the most abundant phase and occurs as fine to medium grained laths both in the groundmass and in barred olivine chondrules. Both orthopyroxenes and clinopyroxenes are present and these tend to be granular. Plagioclase is an abundant interstitial groundmass phase. Chromites were detected in some groundmass olivine and are highly chromiumand iron‐rich with no Fe3+ detected. The kamacite contains small amounts of Co. The mole fraction of the Fe end‐member of olivine (fayalite) and orthopyroxene (ferrosilite) are found to be about 28% and 23%, respectively. These values are compared with that obtained from two chondritic meteorites. Based on these results, the studied meteorite is classified as an ordinary LL5 chondrite.  相似文献   

13.
The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4–5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.  相似文献   

14.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

15.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

16.
Abstract— The Julesburg chondrite, a single stone weighing 57.9 kg, was found in 1983 in Sedgewick County, Colorado, USA. It contains abundant chondrules and chondrule fragments but little fine-grained matrix. The olivine composition ranges from Fa1 to Fa25 but a frequency plot of olivine compositions is strongly peaked at Fa23. The low-Ca pyroxenes range from Fs3 to Fs28 and show no dominant composition. The abundance of clearly defined chondrules, the heterogeneity of the silicates and the presence of glass within chondrules indicate a type 3 chondrite, refined by thermoluminescence data to 3.6. The total iron content of 20.46% is indicative of an L-group stone. The low noble gas retention ages indicate that this meteorite was outgassed late in its history. This is supported by petrographic evidence of brecciation and shock. Aluminum-rich spinels within chondrules and inclusions contain up to 2.6% ZnO which suggests that they formed in a volatile-rich environment.  相似文献   

17.
Abstract The Fremont Butte meteorite was found near Fremont Butte, Colorado, in 1963. A single individual was found weighing 6.6 kg. It is an olivine-hypersthene or L group chondrite showing brecciation and a small number of well formed chondrules and olivine phenocrysts.  相似文献   

18.
19.
Among a collection of meteorites from the area of the Tenham shower (Queensland, Australia) was a 27 kg stone which proved to be different from the other Tenham stones. It is a bronzite, H4, chondrite, the principal minerals being olivine (average composition Fa 18.8), clinobronzite and bronzite (average composition Fs16.4), nickel-iron, and troilite; it is considerably weathered, much of the nickel-iron being converted to limonite. It has a highly chondritic structure, with devitrified glass within the chondrules, and without visible plagioclase. This meteorite was found about 1950 near the Hammond Downs station, hence the name; its coordinates are lat 25° 28′ S., long 142° 48′ E.  相似文献   

20.
The new Brazilian chondrite, Lavras do Sul, was found in 1985 at Lavras do Sul, Rio Grande do Sul State-Brazil (33°30′48″S; 53°54′65″W). It consists of a single mass weighing about 1 kg, covered by a black fusion crust with grayish interior. Four polished thin sections were prepared from a slice weighing 67 g on deposit at the Museu Nacional/UFRJ. It consists mostly of chondrules and chondrule fragments dispersed in a recrystallized matrix. Most chondrules are poorly defined and range in size from 300 to 2,000 μm, although some of them show distinct outlines, particularly when viewed under cross-polarized transmitted and reflected light. The texture of chondrules varies from non-porphyritic (e.g., barred-olivine, radial-pyroxene) to porphyritic ones (e.g., granular olivine as well as olivine-pyroxene). The meteorite contains mainly olivine (Fa24.9), low-Ca pyroxene (Fs22.6) and metal phases, with minor amounts of plagioclase, chromite and magnetite. Mössbauer Spectroscopy studies indicate that the metal phase is kamacite, tetrataenite and antitaenite. Veins of secondary iddingsite crosscut the thin section and some ferromagnesian silicates. The chemical composition indicates that Lavras do Sul is a member of the low iron L chondrite group. The poorly delineated chondritic texture with few well-defined chondrules, the occurrence of rare clinopyroxene and plagioclase (and maskelynite) with apparent diameters ranging from 5 to 123 μm led us to classify Lavras do Sul as an equilibrated petrologic type 5. The shock features of some minerals suggest a shock stage S3, and the presence of a small amount of secondary minerals such as iddingsite and goethite, a degree of weathering W1. The meteorite name was approved by the Nomenclature Committee (Nom Com) of the Meteoritical Society (Meteoritic Bulletin Nº99).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号