首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   

2.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

3.
The uptake of phosphorus by Potamogeton pectinatus, P. lucens, Ranunculus fluitans, Elodea canadensis, Myriophyllum spicatum and Ceratophyllum demersum is investigated in batch tests at 0.02, 0.04, 0.4 and 4.0 mg/l PO in the medium for 4, 28 and 52 h. Uptake is strictly dependent on concentration, a saturation function being discernible already after 52 h. At rising concentration the mechanism of uptake is determined by a decreasing rate of incorporation. The rates of uptake are dependent also on the actual and maximum cell nutrient contents. Species with a low phosphorus content of <5 mg PO/g dry weight as Elodea canadensis, Potamogeton pectinatus and Myriophyllum spicatum show their maximum phosphorus incorporation at low substrate concentrations. At phosphorus contents >5 mg PO/g dry weight the phosphorus incorporation is increased only at substrate concentrations of 0.04… 0.4 mg/l PO.  相似文献   

4.
Errors in the kinematic wave and diffusion wave approximations for time-independent (or steady-state) cases of channel flow were derived for three types of boundary conditions: zero flow at the upstream end, and critical flow depth and zero depth gradient at the downstream end. The diffusion wave approximation was found to be in excellent agreement with the dynamic wave approximation, with errors in the range 1–2% for values of KF (? 7.5), where K is the kinematic wave number and F0 is the Froude number. Even for small values of KF (e.g. KF20 = 0.75), the errors were typically less than 15%. The accuracy of the diffusion wave approximation was greatly influenced by the downstream boundary condition. The error of the kinematic wave approximation was found to be less than 13% in the region 0.1 ? x ? 0.95 for KF = 7.5 and was greater than 30% for smaller values of KF (? 0.75). This error increased with strong downstream boundary control.  相似文献   

5.
It is shown that the new definition1 of strong motion local magnitude M leads to stable estimates of magnitudes for earthquakes in Yugoslavia, with epicentral distances R <100 km and for 2.5 < M < 6.5. Tables with magnitudes computed using this new procedure are presented for all earthquakes contributing to the strong motion accelerogram files in EQINFOS for Yugoslavia.2 The similarity of our findings with the analogous analyses for California suggests new possibilities for relative calibration between various local magnitude scales, which are used in southeastern Europe, and ML in California.  相似文献   

6.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   

7.
A study of the changes in the ionic loads of NO, NH, SO and H+ in a boreal forest snowpack at Lake Laflamme, Québec was carried out using hydrological and chemical data from field lysimeters. The results showed that depletion of the N-containing species occurs periodically in the snowpack during meltwater discharge. Rain-on-snow events led to in-pack losses of NO and NH at a rate of 130 μeq m?2 day?1 and 101·3 μeq m?2day?1 respectively. On dry days, however, dry deposition and deposition of organic debris from the canopy resulted in increases of 183·3 μeq m?2day?1 for NO and 4·5 μeq m?2day?1 for NH in the pack. In contrast, SO42? showed continual in-pack increases due to deposition of 5·0 μeq m?2day?1 for wet days and 92·6 μeq m?2day?1 for dry days. The depletion of NO and NH is due to microbiological uptake of these nutrients during periods when the free water content of the pack is high. Controlled melts in a laboratory snowmelt simulator containing snow and organic matter from the forest canopy at Lake Laflamme showed losses of NO and NH similar to those observed in the field. As the microbiological uptake proceeds at a rate comparable to that of ionic load increases in the pack by dry deposition, models of the chemical dynamics of snowmelt should take the former into account in any system where organic content of the snowpack is appreciable.  相似文献   

8.
Shallow and bedrock groundwater from granitic aquifers were investigated for the hydrogeochemistry of major and minor constituents in an agricultural area. Nitrate concentrations were observed up to 49 mg/l as NO3‐N, with 22% of samples exceeding the drinking water standard, which could pose a significant threat because most residents rely on groundwater as their drinking water source. Principal component analysis revealed three principal components (PCs): (1) nitrate contamination, contributed by major cations, Cl?, SO and NO , (2) reduction processes positively involving Fe, Mn and B, and negatively involving dissolved oxygen and NO and (3) natural mineralization, involving HCO and F?. Cluster analysis, performed on the PC scores, resulted in seven sample groups, which were successfully identified by total depth, elevation and land use. The nitrate‐contaminated groups had mixed land uses, with locally concentrated residential areas. Uncontaminated groundwater groups were found in the natural environment, including high‐altitude spring water and bedrock groundwater with a higher degree of natural mineralization. Shallow groundwater groups in paddy fields in lowlands were affected by reducing environments, of which one group was characterized by high Fe, Mn and B, and negligible nitrate. Groundwater with intermediate nitrate and lower Cl? and SO was found primarily in hilly terrains with orchards and vegetable gardens, indicating lower contaminant loadings than lowland areas. Higher concentrations of F? and nitrate were observed in the nitrate‐contaminated water, which seemed unlikely to be explained by groundwater mixing. The strong acidity generated from nitrification may infiltrate deeper into the aquifer, induce accelerated weathering of bedrock and result in the coexistence of F? and nitrate, which may be an evidence of intense nitrate loading, leading to soil acidification. Multivariate statistical analysis successfully delineated hydrochemical characteristics of groundwater attained by natural and anthropogenic processes in an agriculturally stressed area with complex topographic land use patterns. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The Krusné hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long‐term routine sampling of bulk precipitation (1977–1996) and stream water (1977–1998) in a forested area on the south‐eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume‐weighted Ca2+ and SOconcentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume‐weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SONOwere highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die‐back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend in runoff. For Ca2+, Mg2+ and SOthe concentration minimum occurs in September and the maximum occurs in February or March, correlating with the seasonal baseflow. These solutes are primarily controlled by the contribution of soil water and groundwater to stream flow. During snowmelt, the meltwater generally causes concentrations to decrease as soil water and groundwater are diluted. For NO3 , average minimum concentrations occur in August at the end of the growing season concurrent with the lowest stream flow, and the maximum occurs in February and March with high stream flow during snowmelt. Seasonal stream water NOconcentration variations are large compared with the long‐term decrease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Species composition, abundance, and seasonal distribution of the Gastropoda fauna and the physical and chemical variables of Upper Sakarya River System have been investigated between October 1998 and August 1999. Gastropod fauna in the Upper Sakarya River System was represented by 9 species of Prosobranchia and 7 species of Pulmonata. Diversity, dominance, and abundance of the Gastropoda species were recorded seasonally. The abundance of some of the 16 species was correlated positively with temperature, dissolved oxygen and negatively or positively with pH and nitrate. It was observed that Gyraulus albus (Müller, 1774), Physa acuta Draparnaud, 1805, Valvata pulchella Studer, 1820, and Oxyloma elegans (Risso, 1826) can tolerate a high level of NO‐N while V. piscinalis (Müller, 1774) spread out in unpolluted water. Although the species and their numbers change at the stations, the maximum numbers were found during autumn, while minimums were identified during the winter sampling. Gyraulus albus was the most widespread species in our research area. Only 5 species (Gyraulus albus, Physa acuta, Valvata cristata (Muller, 1774), Valvata pulchella, Melanopsis praemorsa costata (Olivier, 1804)) were determined each season. However, no Gastropoda were found at the station 3 that has high BOD, NO‐N, NO‐N, and NH3 levels.  相似文献   

11.
A study was performed in two submerged, pilot‐scale biofilm bioreactors operated under different conditions to determine the relationship between the operating parameters and H2S emission. H2S was always detected in the exhaust air at concentrations varying from 1 to 353 ppmv. The specific aeration rate was the most influencing parameter, with As < 30 kg COD (dissolved oxygen concentrations <4 mg L?1) increasing noticeably the H2S production. The periodical removal of the accumulated sludge reduced H2S emissions by ~14%.  相似文献   

12.
One mechanism by which biochar application enhances soil nutrient availability is through direct nutrients release from biochar. However, factors controlling the release processes are poorly understood. In this study, the effects of pH, biochar to water ratio, temperature, ionic strength, and equilibration time on the release of PO, NO, NH, K+, Na+, Ca2+, and Mg2+ from biochar were evaluated in simulated experiments. The release of PO, K+, Ca2+, and Mg2+ was significantly affected by extraction pH, suggesting that their release from biochar was pH dependent or an H+‐consuming process. Correlation analysis indicated that PO and Ca2+, PO and Mg2+, and Ca2+ and Mg2+ were co‐solubilized with increasing soil acidity. To a lesser extent, the recovery of the nutrients was also affected by the ratio of biochar to water: more nutrients were soluble with more water supply. In contrast, the release of Na was not affected by pH while the concentration increased with decreasing biochar to water ratio. Meanwhile, other factors (temperature, ionic strength, and equilibration time) had less effect on nutrient release from biochar. Under the influence of pH, the patterns of NO and PO release from biochar were different: extractable NO concentration was not affected by the pH but more PO was released in strongly acidic conditions. Our data suggested that P was mainly retained in inorganic forms while N was in organic forms in biochar. We conclude that environmental factors have marked influences on nutrients release from biochar.  相似文献   

13.
The increasing nitrate concentrations in the ground water and drinking water which are caused by intensified fertilizing lead to the risk of methaemoglobinaemia of babies and increase the cancerogenic, teratogenic and mutagenic risk for the total population. In the drinking water conditioning the nitrate concentration can be reduced by different techniques. By ion exchange first the SO4-ions and then the nitrate-ions are removed. Very favourable is the exchange for HCO and the regeneration by means of carbon dioxide and CaCO3, for which a mass balance of substances is given. With 0.55 DM/m3 also the reverse osmosis in a mixture with raw water is practicable and also electrodialysis can be applied, whereas the biological techniques of the heterotrophic or autotrophic denitrification still include unsolved technological problems due to the necessity of an organic substrate or of H2. The special features of each of these techniques and the hygienic and also the corrosion-chemical consequences are indicated.  相似文献   

14.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

15.
The wet ammonia (NH3) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO2) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH3), so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch‐based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO2 with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH3). The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH3) than palm shell activated carbon (PSAC). The Co(NH3) reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH3) reduction rate increases with its initial concentration. Best Co(NH3) conversion is gained at a pH range of 2.0–6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH3) reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO2 by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time.  相似文献   

16.
A theoretical equation was developed to express the time variation of drainage density in a basin or geomorphic surface: Di(t, T) is the drainage density at time T on the i-th basin or geomorphic surface, which was formed at time t; β(τ) is a factor related to the erosional force causing the development of the rivers of the basin or surface at time τ; δi is the maximum drainage density; and Di is the initial drainage density on the i-th geomorphic surface or basin. The equation is based on the assumption that the drainage density increases with time until it reaches a specific upper limit δi(t)), the maximum drainage density, which is related to certain physical properties of the basin. The equations for various dated basins or geomorphic surfaces can be combined into one modified equation if the same relative erosional forces have acted on those basins or surfaces (β(t) = β(t) and if the basins or surfaces have the same physical properties δi(t) = δi(t), (Di = D0). The application of this equation to coastal terraces and glacial tills shows that the model is compatible with observed drainage densities on various dated basins or surfaces.  相似文献   

17.
Radon (222Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGDnearshore) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGDnearshore was 0.39-0.58 m3/s, less than 30% of Todoroki River’s baseflow discharge. SGDnearshore was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGDnearshore elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River’s baseflow -N (2-4 mg/L). This increased nearshore Chl-a from 0.5-2 μg/l compared to the typically low Chl-a (<0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas.  相似文献   

18.
Nutrient and Oxygen Balance of a Highly Polluted Treated Sewage Channel with Special Regard to the Submerged Macrophytes The changes of the concentrations of inorganic nitrogen compounds, orthophosphate, and oxygen were measured in the flowing wave along the flowing stretch of the Berlin treated sewage channel Wuhle monthly over a period of two years (1993/94) to estimate the nutrient and oxygen balances. This treated sewage channel is rich in nutrients and densely covered with submerged macrophytes. During the period of investigation in 1993 (1994), the effluent of the sewage treatment plant Falkenberg, which is lacking in adjustable nitrification and denitrification. contained in average 16.1 (12.7) mg/L of NH-N, 13.7 (9.4) mg/L of NO3?-N. 0.94 (0.69) mg/L of NO-N. and 0.36 (0.26) mg/L of PO-P. Due to the neglectable influence of other processes like nutrient uptake by submerged macrophytes and algae, desorption of ammonia or dilution, the changes of the concentrations of the inorganic nitrogen compounds are mainly influenced by nitrification and denitrification. The nitrification is mainly done by sessile nitrifiers in the treated sewage channel Wuhle. The nitrification rates. calculated from the decrease of the ammonium concentrations, were between 0.5 and 20 g/(m2d) related to the flowing stretch area. The ammonium concentrations decreased along the flowing stretch in average by 20 to 44%. The highest nitrification rates could be found at the stretches with a dense colonization with submerged macrophytes and a good oxygen supply due to low water depth and high flowing velocities. The denitrification rates, calculated from the decrease of the total of the concentrations of the inorganic nitrogen compounds, were between 0.5 and 23 g/(m2d) related to the flowing stretch area. The total loss of nitrogen due to denitrification was between 10 and 20% along the flowing stretch of the treated sewage channel Wuhle. This corresponds to a total amount of up to 530 kg nitrogen per day. The main part of the phosphorus occured as orthophosphate in concentrations between 0.04 and 0.87 mg/L of PO-P in the effluent of the treatment sewage plant Falkenberg. The orthophosphate concentration changed along the flowing stretch mostly in such a manner that it were at the same level at the end of the flowing stretch at the mouth into the river Spree. The self-purification capacity of the channel does not lead to a relevant reduction of the very high nutrient load under the present conditions. The rates of the photosynthetic production (P) and the community respiration (R) were calculated from the rates of the total changes of oxygen with regard to the physical aeration. The rates of the photosynthetic production were between 0 and 33 g/(m2d), the rates of the community respiration between 15 and 75 g/(m2d). Therewith, the Wuhle treatment sewage channel belongs to the very productive waters. A positive balance (P > R) could only be measured on two segments in May. The rates of oxygen production depend on the ratio width to depth of the water. It is possible that the positive influence of the submerged macrophytes on the oxygen balance also at higher biomasses than 250 g/m2 (as dry weight) predominates at the segments with a favourable ratio. The portion of the oxygen input through diffusion along the flowing stretch and at the weirs was 30%, respectively, that of the photosynthic production 40% in summer. The rates of community respiration decreased along the flowing stretch by 50 to 90%. The nitrification had the main portion of the oxygen depletion in the Wuhle treated sewage channel with 60…80%. Despite the high biomass, the respiration of the submerged macrophytes had only a small portion of the total oxygen depletion. Nevertheless, the submerged macrophytes contributed to the nearly total oxygen depletion at the most densely covered segment 2 at night. The decrease of the content of particular organic material and the ammonia concentrations at the effluent of the sewage treatment plant, a diminishing of the biomass of submerged macrophytes by shading, and the widening of a few flowing stretches are demanded for the improvement of the oxygen balance of the Wuhle treated sewage channel.  相似文献   

19.
The water quality of an urban pond in the thickly populated area of Varanasi city (5 km apart) was studied and compared with a rural pond in the Banaras Hindu University campus for transparency, conductivity and nutrient richness (Cl?, SO, PO? P, NO? N, organic carbon, Ca2+, Mg2+, K+, Na+) at three depths (surface, 1.5 m, 3 m) at monthly intervals between February 1982 and February 1983. This was done to assess the effects of urban surroundings of a very ancient city sector on pond water quality in reference to that of a rural pond. The rural pond had a lush growth of 12 macrophytic species, whereas the urban one had only such a growth with many phytoplanktonic species. Transparency was maximum in the winter season and the rural pond water was more transparent, while the electrolytical conductance was maximum in the rainy season, being higher in the urban pond. Electrolytical conductivity was negatively correlated to transparency: urban: EC = 1081.612–6.575 T, r2 = 0.897, F1,11 = 96, P <0.005; rural: EC = 728.981–4.328 T, r2 = 0.892, F1,11 = 91, P <0.005. Chloride and sulphate concentrations were highest in summer months, but the former was much higher in the urban pond while the latter in the rural pond. NO3–N was highest in the rainy season in the rural pond and in early winter in the urban one and showed a definite trend with change in depth. PO4–P also varied with depth and time and it was higher in late summer and the early rainy season in the rural pond and in early winter in the urban pond. But both these nutrients were much higher in the urban pond. The maximum organic carbon concentration was found in the rainy season in the rural pond and in summer months in the urban pond. The variation of organic carbon with depth was distinct. Both summer and winter seasons showed almost similar values of calcium concentration in the rural pond, but in the urban pond it was maximum in summer. Organic carbon and calcium were higher in the urban pond. The magnesium concentration was highest in rainy months in both the ponds, but the periodicity of the minimum differed. The distribution of calcium with depth was not well defined. The highest concentration of potassium was found in the winter season in both the ponds. The sodium concentration in the rural pond was observed maximum in summer and minimum in the rainy season, but in the urban pond the trend was different. The variation of potassium and sodium with depth was not well defined. Magnesium and sodium were also higher in the urban pond but potassium was almost at the same concentration in both the ponds. The effect of urbanisation may be one of the factors which might be responsible to the shift of the species composition towards phytoplanktonic flora.  相似文献   

20.
Ultrafiltration (UF) can remove natural organic matter (NOM) effectively. Moreover, chlorine dioxide (ClO2) has been an alternative disinfectant as it forms fewer disinfection by‐products with NOM than chlorination does. Therefore, combining ClO2 with UF may improve conventional purification processes. In this study, feed water containing humic acid with 4.07 mg/L total organic carbon (TOC) was dosed directly with various amounts of ClO2 (0, 2, 5, 10, and 15 mg/L) before being filtered through a 5‐kDa UF membrane. With a low dose (2 mg/L ClO2), UF removed humic acid effectively, as TOC was not detected in the permeate, and the permeate flux increased to about 80% of the initial permeate flux by cross flow. Moreover, the concentrations of ClO, ClO, and trihalomethanes in the permeate were below the United States Environmental Protection Agency guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号