首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of Schlumberger and dipole arrays for crustal-scale resistivity soundings is considered. Advantages and disadvantages of the two methods are described. The depth to which resistivity may be determined from field measurements is discussed as well as the determination from the sounding curves of various parameters associated with layered structure. The interpretation of experimental data using reference curves as well as two approaches used in computer assisted interpretation are discussed.  相似文献   

2.
Abstract

Geoelectric resistivity measurements by means of direct current for solving hydrogeological problems have become increasingly significant in recent years. Measurements on the surface according to the four-point-method (SCHLUMBERGER or WENNER arrangement) result in so-called “apparent” resistivities ? α as a function of the electrode distance L. The evaluation of these measuring data, here in form of sounding graphs ? α(L/2), consists of the determination of true resistivities as a function of the depth z. Since a direct computation of ? (z) from α (L/2) is not possible in practice, theoretically computed master curves constitute the essential auxiliary means for the evaluation.

New simplified calculation techniques allow to establish accurately computed master curves for an underground consisting of more than three layers. By means of such standard graphs special problems of hydrogeology can quantitatively be solved by applying geoelectrical methods. The procedure is demonstrated on hand of complicated cases of aquifers devided into several storeys.  相似文献   

3.
Analytical solutions of vertical electrical soundings (VES) have mostly been applied to groundwater exploration and monitoring groundwater quality on terrains of fairly simple geology and geomorphology on which the electrode arrays are symmetrical (e.g. Schlumberger or Wenner configurations). The sounding interpretation assumes flat topography and horizontally stratified layers. Any deviations from these simple situations may be impossible to interpret analytically. The recently developed GEA-58 geoelectrical instrument can make continuous soundings along a profile with any colinear electrode configuration. This paper describes the use of finite-difference and finite-element methods to model complex earth resistivity distributions in 2D, in order to calculate apparent resistivity responses to any colinear current electrode distribution in terrains in which the earth resistivities do not vary along the strike. The numerical model results for simple situations are compared with the analytical solutions. In addition, a pseudo-depth section of apparent resistivities measured in the field with the GEA-58 is compared with the numerical solution of a real complex resistivity distribution along a cross-section. The model results show excellent agreement with the corresponding analytical and experimental data.  相似文献   

4.
A theory for the bipole-dipole method of resistivity sounding is developed. Bipole-dipole apparent resistivities are related to Schlumberger apparent resistivities at two spacings. The theory can also be used to compute exact dipole-dipole apparent resistivity curves providing an improvement over the existing techniques which involve far field approximations. A comparison of bipole-dipole and dipole-dipole systems reveals the similarity between the two. However, the resolution of the bipole-dipole system depends on the azimuth angle. The flexibility of the theoretical expressions lead to a generalized field scheme independent of the bipolar or dipolar nature of the current source.  相似文献   

5.
A number of electrical resistivity arrays are available to the exploration geophysicist in the conduct of vertical or horizontal profiling. The advantage of using central-type arrays which produce large potential drops, such as the Wenner or the Schlumberger, must be weighed against the ease of acentral arrays such as the polar and equatorial arrays. A series of nomograms has been designed to provide a means of rapid calculation of the potential drop to be obtained by any of the various central and acentral arrays, as a function of apparent resistivity, electrode spacings and available transmitter power. The same nomograms may also be used for approximate computation of the apparent resistivities in routine surveys. However, the accuracy of resistivity calculation is directly related to the accuracy of drawing lines between the scales and hence is rather limited in reduced-size nomograms in this paper.  相似文献   

6.
Summary The problem of electromagnetic induction in a half-space with a cylindrical inhomogeneity is treated. Solutions for TE and TM polarization of the exciting electromagnetic field are given, which can be used for computing sounding and profiling curves. The anisotropy of the surface impedance is pointed out, as well as a whole series of other interesting properties of the magnetotelluric field in this model; some of them are also demonstrated on the computed theoretical curves.  相似文献   

7.
Abstract

Four geoelectrical soundings were measured with a combination of Schlumberger and azimuthal or equatorial dipole electrode arrays on a Carboniferous limestone basin of the Condroz area, Belgium. The measuring technique is briefly outlined as well as the interpretation procedure, which follows a closed-loop scheme with control of calculated model curves. Some general problems of interpretation of geoelectrical sounding curves are tackled, as far as they have a practical bearing on the treatment of Condroz soundings.

The problem of determining the very high resistivity of limestone is approached through ARCHIE's formula, an empirical relation between the bulk rock resistivity, the porosity and the electrolyte resistivity. An evaluation of the latter two parameters, combined with electrical horizontal conductance measurements directly made on resistivity sounding curves, offers a possibility for fast determination of the total water storage in a limestone aquifer. Such storage determinations could be applied whenever an aquifer shows up as a conductive layer interbedded between two highly resistant layers (e.g. nonsaturated limestone and compact, non-fractured limestone).  相似文献   

8.
In this paper a technique for computing type curves for the two-electrode resistivity soundings is presented. It is shown that the apparent resistivity due to the system can be represented by a convolution integral. Thus, it is possible to apply the principle of digital linear filtering and compute the desired type-curves. The filter function required for the purpose is found to be identical with that used to compute the EM sounding curves for the two coplanar horizontal loop system. It is further shown that from the two-electrode apparent-resistivity expression one can easily derive the apparent resistivities for other configurations. A comparison of depths of investigation for various systems reveals that the two-electrode system has greater depth of investigation than other conventional systems. This is also supported by the field example presented in the end, which illustrates the relative performance of the two-electrode system vis-a-vis the Wenner system.  相似文献   

9.
3D resistivity inversion using 2D measurements of the electric field   总被引:3,自引:0,他引:3  
Field and 'noisy' synthetic measurements of electric-field components have been inverted into 3D resistivities by smoothness-constrained inversion. Values of electrical field can incorporate changes in polarity of the measured potential differences seen when 2D electrode arrays are used with heterogeneous 'geology', without utilizing negative apparent resistivities or singular geometrical factors. Using both the X - and Y -components of the electric field as measurements resulted in faster convergence of the smoothness-constrained inversion compared with using one component alone. Geological structure and resistivity were reconstructed as well as, or better than, comparable published examples based on traditional measurement types. A 2D electrode grid (20 × 10), incorporating 12 current-source electrodes, was used for both the practical and numerical experiments; this resulted in 366 measurements being made for each current-electrode configuration. Consequently, when using this array for practical field surveys, 366 measurements could be acquired simultaneously, making the upper limit on the speed of acquisition an order of magnitude faster than a comparable conventional pole–dipole survey. Other practical advantages accrue from the closely spaced potential dipoles being insensitive to common-mode noise (e.g. telluric) and only 7% of the electrodes (i.e. those used as current sources) being susceptible to recently reported electrode charge-up effects.  相似文献   

10.
With the aim of studying the behaviour of geoelectric axial dipole vertical soundings over complex geology, a systematic theoretical approach is presented for a class of earth structures characterized by horizontal and vertical parallel boundary planes. The two-dimensional cylindrical bodies of infinite length and rectangular cross-section are constrained to have resistivities satisfying Alfano's condition at every intersection line of the graticule, in order to adopt the image-point theory. A detailed analysis is performed for models with any number of horizontal boundaries and two vertical discontinuities. The apparent resistivity formulas are obtained and selected apparent resistivity curves are drawn for different parameter combinations and various directions of the sounding expansion axis. The class under consideration contains as a particular case the HVC model elaborated in Alpin's monograph, where only a small collection of master curves is available for the axial array. The reconstruction of those curves by the present formulation shows the existence of large discrepancies. A test based on the transformation to equivalent half-Schlumberger sounding curves supports the conclusion that an unidentified error must exist in some part of the theoretical approach of the Russian researchers. Finally, some field sounding curves based on geothermal and volcanological surveys are presented and interpreted by complete curve matching, essentially to show the applicability of the theoretical solutions.  相似文献   

11.
Model uncertainty is introduced into direct-current resistivity data by adding random changes to layer thicknesses in a ten-layer model. The resulting information is then aliased by generating a sounding curve which contains less information than the ten resistivities and nine thicknesses. These sounding curves are then inverted via the Backus-Gilbert algorithm using singular value decomposition to obtain solutions in terms of simpler two-or three-layer models. Quantitative results confirm what has been known qualitatively for many years as the principle of equivalence. An interesting result is that the geometric average of a given suite of noisy models is virtually identical to the best-fit model for the average of the noisy curves. The results show that the inversion of resistivity data by nonlinear least-squares parameter fitting is stable in the sense that noise in the data inverts to the same magnitude of noise in the model.  相似文献   

12.
The difficulty to use master curves as well as classical techniques for the determination of layer distribution (ei, ρi) from a resistivity sounding arises when the presumed number of layers exceeds five or six. The principle of the method proposed here is based on the identification of the resistivity transform. This principle was recently underlined by many authors. The resistivity transform can be easily derived from the experimental data by the application of Ghosh's linear filter, and another method for deriving the filter coefficientes is suggested. For a given theoretical resistivity transform corresponding to a given distribution of layers (thicknesses and resistivities) various criteria that measure the difference between this theoretical resistivity transform and an experimental one derived by the application of Ghosh's filter are given. A discussion of these criteria from a physical as well as a mathematical point of view follows. The proposed method is then exposed; it is based on a gradient method. The type of gradient method used is defined and justified physically as well as with numerical examples of identified master curves. The practical use for the method and experimental confrontation of identified field curves with drill holes are given. The cost as well as memory occupation and time of execution of the program on CDC 7600 computer is estimated.  相似文献   

13.
The theory of electrical dipole soundings proved that this method can produce resistivity measurements, which are comparable with those obtained by electrical soundings of the Wenner or Schlumberger type. Their main advantage is the use of short cable lengths, which is important if the depth of penetration should be large. A considerable disadvantage of the dipole method is the great sensitivity to lateral discontinuities. Though these have an influence on the Schlumberger arrangement as well, they can disturb a dipole sounding to such an extent than an interpretation based on a horizontal layer case is no more possible. There are six different dipole arrays, which differ from each other with respect to the angle enclosed by the two dipole orientations-the current dipole AB and the measuring dipole MN. The theoretical comparison of the dipole arrays with the Schlumberger array concerning their sensitivity to lateral discontinuities is a useful basis for the choice of the most suitable configuration. Considering geological subsurface conditions the right choice of a dipole array can give an optimal result, i.e. a dipole sounding for which the sensitivity to lateral discontinuities is as small as possible under the given circumstances.  相似文献   

14.
An electromagnetic sounding experiment with a large square loop as source was carried out on the dried-up bed of a water reservoir near the town of Dharmavaram in Andhra Pradesh. The sounding was performed in both geometric and parametric modes, and involved measurements of phase as well as amplitude of the vertical magnetic field inside and outside the loop. The six-frequency EM system used for the experiment was found to be a workable system for electromagnetic sounding. The results of the experiment more or less confirm the conclusions from theoretical modeling. They also show that even though the earth is not always electrically horizontally layered over a sufficiently large lateral extent for the one-dimensional model to be strictly valid, it is still possible to apply such modeling to sounding curves taken one part at a time and obtain layer parameters which check qualitatively with the layer parameters obtained from direct current resistivity sounding.  相似文献   

15.
The basic principles of the application of the linear system theory for smoothing noise-degraded d.c. geoelectrical sounding curves were recently established by Patella. A field Schlumberger sounding is presented to demonstrate first their application and validity. To achieve this purpose, firstly it is pointed out that the required smoothing or low-pass filtering can be considered as an intrinsic property of the transformation of original Schlumberger sounding curves into pole-pole (two-electrode) curves. Then we sketch a numerical algorithm to perform the transformation, opportunely modified from a known procedure for transforming dipole diagrams into Schlumberger ones. Finally we show a field example with the double aim of demonstrating (i) the high quality of the low-pass filtering, and (ii) the reliability of the transformed pole-pole curve as far as quantitative interpretation is concerned.  相似文献   

16.
The technique of linear digital filtering as developed for the direct interpretation of Schlumberger and Wenner soundings (Ghosh 1971) has been applied here for the derivation of the resistivity transform function from the field dipole measurements as the first step in directly interpreting dipole data. Filter coefficients for this transformation have been worked out for the radial-polar, perpendicular and parallel (30°) arrays of dipole sounding. The procedure combines speed with accuracy.  相似文献   

17.
Integrated geophysical and chemical study of saline water intrusion   总被引:3,自引:0,他引:3  
Choudhury K  Saha DK 《Ground water》2004,42(5):671-677
Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations-the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking.  相似文献   

18.
A horizontal transmitter loop (vertical magnetic dipole) is used for frequency electromagnetic (FEM) soundings. The frequency ranges from approximately 6 Hz to about 4000 Hz. The vertical and radial magnetic field components are measured for 20 frequencies per decade several hundred meters from the transmitter loop. A very small bandwidth is selected for amplification using a reference signal. An Apple computer is used for data acquisition. A computer program for Marquardt inversion optimizes the parameters for the n-layer case: the resistivities and thicknesses of individual beds and a correction factor for the primary magnetic field. Interpretation of each component individually yields practically the same parameters. Examples from the field are given with interpretation; comparison with dc resistivity measurements is provided. The ratio of vertical/radial magnetic field components vs. frequency can be transformed simply into apparent resistivity vs. apparent depth. This can be done in the field to obtain an estimation of the depth of the layer boundaries. FEM results are compared with Schlumberger d.c. sounding obtained at the same site.  相似文献   

19.
基于远震接收函数的南极大陆冰盖厚度研究   总被引:1,自引:1,他引:0       下载免费PDF全文
冰盖厚度是研究南极冰盖质量、建立冰盖动力学模型的基本参数,对于冰川均衡调整、冰盖物质平衡及全球气候变化研究具有重要意义.基于地震学的远震接收函数和H-Kappa格网搜索方法可以用于地震台站下方冰盖厚度的可靠探测,不仅能与冰雷达获得的冰盖厚度进行独立对比,还可以与冰雷达方法相互补充,进一步填补南极大陆冰盖厚度探测空白区.本文利用布设于南极大陆冰盖上方的流动地震台阵记录到的远震波形数据,基于接收函数方法对台阵下方的冰盖厚度进行了研究.结果显示:基于远震接收函数方法的冰盖厚度与Bedmap2冰厚格网模型相比,二者差别大多在200 m以内;少数台站差值达到600 m左右,这一差别可能与Bedmap2测线分布空区、冰雷达测深不确定性以及冰盖内部复杂波速结构等因素有关.本文研究结果表明:利用南极大陆冰盖上方的流动地震台阵,基于远震接收函数方法可以获得比较可靠的南极冰盖厚度,为独立验证冰雷达的探测结果并弥补冰雷达探测空白区提供了有效方法.同时,部分台站接收函数波形的复杂性可能暗示了南极大陆数千米厚的冰盖内部结构不是均一的,仍然存在比较复杂的内部结构变化.因此,有必要进一步利用包括接收函数波形拟合、地震面波反演等方法对南极大陆冰盖厚度及其内部精细结构进行更为深入的研究.  相似文献   

20.
A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号