首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) have been found in mangrove sediments due to anthropogenic pollution, and microbial degradation has been suggested as the best way to remove PAHs from contaminated sediments. The degradation of phenanthrene, a model PAH compound by bacteria, either the enriched mixed culture or individual isolate isolated from surface mangrove sediments was examined. The effects of salinity, initial phenanthrene concentrations and the addition of glucose on biodegradation potential were also investigated. Results show that surface sediments collected from four mangrove swamps in Hong Kong had different degree of PAH contamination and had different indigenous phenanthrene-degrading bacterial consortia. The enriched bacteria could use phenanthrene as the sole carbon source for growth and degrade this PAH compound accordingly. A significant positive relationship was found between bacterial growth and percentages of phenanthrene degradation. The phenanthrene biodegradation ability of the enriched mixed bacterial culture was not related to the degree of PAH contamination in surface sediments. The growth and biodegradation percentages of the enriched mixed culture were not higher than that of the individual isolate especially at low salinity (0 and 10 ppt). High salinity (35 ppt) inhibited growth and biodegradation of phenanthrene of a bacterial isolate but less inhibitory effect was found on the mixed culture. The inhibitory effects of salinity could be reduced with the addition of glucose.  相似文献   

2.
An oligotrophic bacterium was isolated from the biological soil crust underlayer in the Xinjiang Gurbantunggut Desert. It was numbered SGB-5, G+. Cell size is (0.328–0.746) μm×(0.171–0.240) μm. Raised colony is white, roundness and its diameter is 5 mm. The strain is a facultative aerobe. It was able to grow in conditions of 1–15 mg·C·L?1 culture medium at 10–50°C. The strain’s optimum growth temperature is 37°C. The range of its optimum growth pH is 8–9. A large amount of extracellular mucopolysaccharide was secreted during growth. The chemical composition of this mucopolysaccharide consists of arabinose, X sugar, glucose, galactose and mannitol. Mole ratio of these sugars is 1:14:19:6:14. The viscosity of the mucopolysaccharide can reach 6300 mPa·s, when the strain is cultivated for 72 h. After the culture solution in which viscosity was 1500 mPa·s was sprinkled on the quicksand surface, 6 mm bacteria crust of conglutinating sand was formed. This crust could not only stabilize sand, but could also potentially slow the rate of the soil water evaporation.  相似文献   

3.
A model is designed and discussed for the popular growth of a bacterial culture which grows by using a single toxic substrate. The model is based upon an enzymatic reaction with irreversible inhibition by the substrate. The stationary state of the system is represented and the range of its stability against the parameters of the model is defined.  相似文献   

4.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   

5.
Purification of Wastewaters Containing Azo Dyes This study describes the degradability of the azo dye C.I. Reactive Violet 5 by a continuous flow biological treatment system consisting of three rotating disc reactors. The azo dye was first decolorized in an anaerobic reactor. Decolorization was improved by adding an auxiliary substrate (yeast extract and acetic acid). Although severe operating conditions were experienced due to failures in the temperature and pH-controllers, the reactor recovered quickly and continued to decolorize reliably. The removal of the auxiliary substrate in the anaerobic reactor was not satisfactory, probably due to the copper in the azo dye. Batch experiments showed that copper was removed from the dye molecule and precipitated during the decolorization. In the continuous flow reactor, the copper precipitate on the disc can redissolve due to a pH-gradient in the fixed biomass becoming toxic again for the bacteria. In the following two aerobic reactors, the auxiliary substrate was degraded, but mineralization of the dye metabolites was insufficient. The aromatic amines produced by the anaerobic decolorization are more toxic in the bacterial luminescence test than the azo dye. Therefore, decolorization alone cannot be used to treat colored wastewater. Since the amines can also be produced in anaerobic parts of rivers, the dyes have to be removed in a more efficient way. That is the reason why in further experiments ozonation is being tested to increase the biological degradability of the azo dye for a following aerobic stage. Either ozonation can be used after the two stage treatment of the dye in anaerobic/aerobic reactors or the dye can be oxidized directly, making the addition of auxiliary substrate unnecessary. These configurations are being tested with the goal to degrade the dye with the least ozone consumption.  相似文献   

6.
This work investigates electrolytic treatment and activated carbon adsorption for the removal of melanoidins, the recalcitrant coloring component in fermentation industry wastewaters. A 10% solution of synthetic melanoidins was electrolytically reduced and simultaneously oxidized in an electrolytic cell, thereby altering its reactivity. Adsorption studies using granular activated carbon were conducted using both control and electrolyzed streams. The filterability, surface tension and capillary suction time of the samples were also determined. The reduced melanoidins stream exhibited both a high chemical oxygen demand (COD) removal of 79% and a high color removal of 77% upon activated carbon adsorption. In comparison with the oxidized fraction, the reduced samples displayed enhanced filtration flux as well as decreased capillary suction time, thus indicating better filterability. Furthermore, a decline in surface tension was also observed confirming the decreased hydrophobicity of the reduced melanoidins.  相似文献   

7.
The P-uptake by Acinetobacter calcoaceticus, Pseudomonas aeruginosa and Escherichia coli is determined in batch culture with peptone/glucose/sodium chloride or peptone/acetate/sodium chloride as substrate at 60 to 120 mg/1 orthophosphate for 20 h with cell densities of 2 · 107/ml (Acinetobacter) or 1.2 · 109. The measurements were carried out by means of an Na2HPO4 (32P) addition of 95 to 420 kBq. During the stationary phase the bacteria achieved the following P-contents in the biomass in fg/g bacterium: Acinetobacter 6 to 13, Pseudomonas 0.2 to 0.6, Escherichia 0.04 to 0.09; during the phase of growth Acinetobacter achieved 40 to 100 fg/bacterium. Acetate as the substrate did not result in any increase of the P-uptake. The maximum accumulation with Acinetobacter was 13 % P in the dry substance.  相似文献   

8.
A presumed Vibrio parahaemolyticus isolate from Chesapeake Bay, Maryland, USA was previously reported to grow on phenanthrene, a polyaromatic hydrocarbon (PAH) found in crude oil. Following the Deepwater Horizon oil spill in the Gulf of Mexico, concerns were raised that PAH-degrading V. parahaemolyticus could increase in abundance, leading to elevated risks of disease derived from shellfish consumption. To assess this possibility, we examined responses to naphthalene and phenanthrene of 17 coastal Louisiana environmental V. parahaemolyticus isolates representing five distinct genotypes. Isolates were obtained immediately after the spill began and after oil had reached the Louisiana coast. None of the isolates grew on or oxidized either substrate and a naphthalene degradation product, 1-naphthol, substantially inhibited growth of some isolates. The use of PAH by V. parahaemolyticus is unusual, and an increase in human health risks due to stimulation of V. parahaemolyticus growth by oil-derived PAH under in situ conditions appears unlikely.  相似文献   

9.
Stringent effluent limitations for nitrogen necessitate an accurate interpretation of the design and operation conditions of biological nitrogen removal systems. In this study, the effects of the nature of the organic substrate on biomass adaptation and response to different C/N ratios in terms of denitrification efficiency were investigated. A relatively high chemical oxygen demand (COD)utilized/NOx–Nreduced ratio of 8.1 was obtained when an excess amount of readily biodegradable carbon was supplied, which is suggested as the conversion of substrate surplus into storage polymers. An anoxic yield of 0.64 g cell COD/g COD for a four‐compound substrate mixture (acetate, propionate, ethanol and glucose), 0.63 g cell COD/g COD for a two‐compound substrate mixture (acetate and propionate), and 0.5 g cell COD/g COD for methanol were calculated. Fluorescence in situ hybridization analysis showed that the β‐subclass of proteobacteria was dominant in the seed and in cultures adapted to both the four‐compound and the two‐compound substrate mixture, whereas in the methanol‐adapted culture significant amounts of β‐proteobacteria were detected. The biocommunity composition, the type of organic compound and the COD/NO3–N ratio strongly influence the nitrate reduction and carbon utilization profiles. Methanol has been shown to select for a denitrifying population consisting of Paracoccus and Hyphomicrobium vulgare genera, when used as only external carbon source.  相似文献   

10.
Yarrowia lipolytica NCIM 3589, a tropical marine degrader of hydrocarbons and triglycerides transformed 2,4,6-trinitrotoluene (TNT) very efficiently. Though this yeast could not utilize TNT as the sole carbon or nitrogen source, it was capable of reducing the nitro groups in TNT to aminodinitrotoluene (ADNT). In a complete medium containing glucose and ammonium sulphate as the available carbon and nitrogen sources respectively, the culture was able to completely transform 1 mM (227 ppm) of TNT under such conditions. A dual pathway was found to be functional, one of which resulted in the formation of the hydride-Meisenheimer complex (H(-)TNT) as a transiently accumulating metabolite that was subsequently denitrated to 2,4-dinitrotoluene (2,4-DNT), whereas the other pathway resulted in the formation of amino derivatives. The presence of increasing amounts of reducing equivalents in the form of glucose promoted better growth and the nitroreductases of this yeast to reduce the aromatic ring to 2,4-DNT although, the reduction of the nitro groups to amino groups was the major functional pathway. The ability of this tropical marine yeast to transform TNT into products such as 2,4-DNT which in turn could be metabolized by other microbes has implications in the use of this yeast for bioremediation of TNT polluted marine environments.  相似文献   

11.
12.
The paper studies the effect of the solids retention time (SRT) on the rate of biodegradation of morpholine (M), sulfanilic acid (SA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) in laboratory mixed culture systems, fed semicontinuously on a once-a-day feeding schedule. It has been found that the minimum values of SRT at which microorganisms degrading the above compounds were washed out from the cultivation systems were 3, 1, 1, and 20 days for M, SA, NTA, and EDTA systems, respectively. A critical value of SRT was defined as that below which the rate of substrate removal is lower than the rate of substrate application into the system. The critical values of SRT were found to be 8, 3, 2.5, and above 20 days for M, SA, NTA, and EDTA systems, respectively. In a range between the minimum and critical values of SRT the mixed culture system cannot give stable efficiency of a given compound removal and the effluent concentration can be expected to vary considerably. Above the critical value of SRT, every cultivation system has a potential capability of shock loading treatment.  相似文献   

13.
A model of bacterial culture, utilizing a toxic substrate in continuous flow conditions' is discussed in the present paper. The relative velocity of microorganisms growth is expressed by means of a formula proposed by us, grounded on the analogy of a model of an irreversibly inhibited enzymatic reaction. It is assumed that the integral parameter characterizing the damage of the bacterial cell by a toxic agent may be considered a slow variable in regard to the variation of the biomass and substrate concentrations. An equation for the evolution of this parameter is proposed. A problem of minimum time adaptation of the bacterial population is proposed as a time optimal control problem that is solved on the basis of the Pontryagin maximum principle. This model provides a possibility of studying some regularities in the adaptation mechanism of the microorganisms destroying toxic substances. The same model can also be used to forecast the optimal regimes in cultivation of bacterial cultures that play an essential role in the biological self-purification of various water pools.  相似文献   

14.
Heating, ventilating, and air‐conditioning (HVAC) systems ensure indoor air quality and provide a comfortable environment. However, the conventional HVAC systems only provide indoor ventilation and adjust temperature and humidity. This work removes indoor volatile organic compounds (VOCs) using a feasible and novel air‐cleaning for an HVAC system, to remove indoor VOCs. An activated carbon‐fiber (ACF) filter calcined with copper oxide (CuO) catalyst, called a CuO/ACF catalyst filter, was the developed kit. Formaldehyde, a major VOC, was chosen as the target pollutant. Experiments were performed to confirm the filtration ability of the CuO/ACF catalyst filter in removing formaldehyde in a stainless‐steel chamber equipped with a simplified HVAC system. Total air exchange rate (ACH) was controlled at 0.5 and 1.0 h−1, the fresh ACH was 0.15 and 0.30 h−1, and relative humidity (RH) was set at 30 and 70%. A first‐order decay of formaldehyde existed in the controlled chamber when the two pretreated CuO/ACF catalyst filters were employed. Experimental results demonstrate that the CuO/ACF catalyst filters removed formaldehyde effectively. The decay constant was 0.425 and 0.618 h−1 for 0.5 and 2.0 ppm formaldehyde, respectively. Moreover, the formaldehyde decay rate increased as total ACH, fresh ACH, RH, and the Cu(NO3)2 concentration for calcination of CuO/ACF catalyst filter increased.  相似文献   

15.
From 1989 to 1992, the concentration of formaldehyde was measured along the Elbe estuary as well as at anchor stations. In mesocosm experiments, the turnover of formaldehyde could be investigated avoiding the variability caused by tidal advection of different water bodies. Formaldehyde concentrations in the Elbe estuary ranged from 0.5… 180 μg/L. As sources, a release by algae and microbial processes were identified. Three areas with different dominance of formaldehyde turnover processes were found in the estuary. In the limnic part of the estuary, a release of formaldehyde by algae was dominant. In the mixohaline zone and the turbidity maximum, bacterial degradation of organic matter increased the formaldehyde concentration. In the mouth of the estuary, the adjacent Wadden sea areas influenced the concentration due to formaldehyde-rich runoff from the tidal mud flats. In the other parts of the estuary, a fast degradation of formaldehyde kept the formaldehyde concentration at a low level. In sediment cores from the Elbe and a mesocosm, the formaldehyde concentrations were in the same range as in the water column. Mesocosms with and without sediment showed no significant differences in concentration levels which were similar to those measured in the Elbe at the same time. During the investigated period, no anthropogenic impacts of formaldehyde into the Elbe estuary could be detected.  相似文献   

16.
芦苇化感组分对羊角月牙藻和雷氏衣藻生长特性的影响   总被引:2,自引:0,他引:2  
研究了从芦苇(Phragmitis communis Trin)中分离得到的化感组分对羊角月牙藻(Selenastrum caprtcornutum)和雷氏衣藻(Chlamydomonas reinhardtii)生长特性的影响.在藻类生长的对数期向培养液中投加不同浓度的化感组分,分别测定并观察了培养期间受试藻种藻密度和藻细胞形态的变化情况.结果表明,该化感组分对羊角月牙藻藻密度的增长具有明显的抑制作用,半效应浓度(EC50.7d)值为0.60mg/L,同时使羊角月牙藻细胞内部结构改变,形态变大.投加6mg/L化感组分后,藻细胞平均宽度是对照组的1.5倍.该化感组分对雷氏衣藻藻密度的增长没有明显的抑制作用,但使其运动性能降低.  相似文献   

17.
黄诚  谷孝鸿  胡文英 《湖泊科学》1999,11(4):346-350
从西太湖梅梁湾分离出野生水华微囊藻,得到水华微囊藻在半固体培养基上的纯藻株。研究太湖水华微囊藻在室内不同氮,磷浓度下的生长特征,发现在氮浓度在17mg.L^-1,磷逍度为1.7mg.L^-1左右进,微囊藻日增长率最大。比较自然状态和室内培养条件下微囊藻的生长情况,可知野生微囊藻一般能形成较大的群体,室内液体培养基的营养盐浓度远高于野外,却难以得到大群体微微藻,从此实验结果来看,营养盐浓度与微囊藻在  相似文献   

18.
An algal culture medium was developed which reflects the extreme chemical conditions of acidic mining lakes (pH 2.7, high concentrations of iron and sulfate) and remains stable without addition of organic carbon sources. It enables controlled experiments e.g. on the heterotrophic potential of pigmented flagellates in the laboratory. Various plankton organisms isolated from acidic lakes were successfully cultivated in this medium. The growth rates of a Chlamydomonas isolate from acidic mining lakes were assessed by measuring cell densities under pure autotrophic and heterotrophic conditions (with glucose as organic C‐source) and showed values of 0.74 and 0.40, respectively.  相似文献   

19.
Ex‐situ bioremediation of real‐field crude petroleum sludge was evaluated to elucidate the role of co‐culture (bioaugmentation) and external nutrients supplementation (biostimulation) under anaerobic microenvironment. Maximum removal of total petroleum hydrocarbons (TPH) was observed by integrating biostimulation with bioaugmentation (R5, 44.01%) followed by bioaugmentation alone (R4, 34.47%), co‐substrate supplemented operations [R6, 23.36%; R3, 16.5%; R2, 9.88%] and control (R1, 4.36%). Aromatics fraction showed higher degradation in all the conditions studied. Fate of six selected polycyclic aromatic hydrocarbons (PAHs) was evaluated during bioremediation. Among these, four ring PAHs compounds showed good degradation by integration of biostimulation with bioaugmentation (R5) while bioaugmentation alone (R4) documented good degradation of three ring PAHs. Lower ring PAHs compounds showed good degradation with the application of biostimulation (R6). Fluorescent in situ hybridization (FISH) detected the presence of known PAHs degrading microorganisms viz., Bacillus, Pseudomonas, Acido bacteria, Sulphur reducing bacteria Firmicutes, etc. Application of biostimulation and bioaugmentation strategies alone or in combinations documented noticeable influence on the degradation of petroleum sludge.  相似文献   

20.
Mercury and lead tolerance in hypersaline sulfate-reducing bacteria   总被引:5,自引:0,他引:5  
Sulfate-reducing bacteria (SRB) HSR1, HSR4, and HSR14 isolated from the salt pans of Goa grew best at 90-100/1000 salinity on substrates like formate, acetate, lactate, butyrate, ethanol and benzoate. They were gram negative, non-sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl2 and Pb(NO3)2 at final concentration of 50, 100, and 200 and 100, 200 and 500 microg ml(-1) respectively. With Hg, HSR1 showed approximately 80% of the control's growth at 100 and 200 microg ml(-1) but SRA reached only 60% of the control values at the end of 14 days. HSR14 could reach >100% of the control's growth at 200 microg ml(-1) but the SRA reached only up to 60% of the control without metal at 100 microg ml(-1). Though the concentration of Pb was double that of Hg, HSR4 could grow and respire better than the control, the growth being stimulated by 160% and respiration by 170% in the presence of 500 microg ml(-1) of Pb(NO3)2. It is probable that some hypersaline SRB are more tolerant to heavy metals than the mesohaline counterparts and could be more effectively used for precipitating these metals in bioremediatory measures. Further examination of their responses to varied concentration of metals under different salinities would indicate their range of applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号