首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The separation of heavy metals by complexation with macromolecular water-soluble agents and subsequent ultrafiltration is described. The method can be expected to join common techniques of metal separation like liquid-liquid extraction, adsorption, redox reaction or liquid membrane permeation. Reactions between metal ions and polymer phases are characterized as pH-dependent distribution equilibria illustrated at a propene-maleic acid copolymer as an example. The complexation behaviour of the substance under study is governed by isotherms of the saturation type. Attempts proved to be successful to calculate break-through constants as well as saturation capacities from batch-type studies and dynamic measurements by transferring the laws of adsorption and ion exchange, respectively, to the ultrafiltration process. The quantities of fixed metals amounting to about 2.5 mmol/g were found to be in the range of moderate adsorbents. A solution consisting of 3 solutes has been tested to get more detailed information on mixture behaviour as compared to single component systems. In the long run, the proposed method should provide an additional variant for the extraction and concentration of metal ions from diluted aqueous solutions.  相似文献   

2.
3.
Effect of Mixtures of Heavy Metals on the Biological Treatment of Sewages Containing Naphthalenesulfonic Acid Biological wastewater treatment processes can be destabilized considerably by heavy metals. In this investigation, the effect of loadings of heavy metals on the degradation of naphthalene-2-sulfonic acid (2NS) by immobilized bacteria in continuously operated airlift-loop reactors was studied. Shock loadings with mixtures of cadmium and nickel, or cadmium and zinc, respectively, resulted in increases in inhibition compared to those observed with the single metals. In contrast, the 2NS-degradation was less inhibited by shock loadings with mixtures of nickel and zinc than by the single metal ions. Repeated shock loadings up to 100 mg L?1 nickel and 1000 mg L?1 zinc effected an adaptation of the microorganisms. Continuous loadings with up to 10 mg L?1 cadmium and nickel each, or with 50 mg L?1 nickel and 210 mg L?1 zinc, respectively, did not inhibit the degradation of 2NS. The permanent loadings led to an adaptation of the bacteria with an increased biosynthesis of proteins from 0.2 to 0.5 g g?1 cell dry weight. However, if the immobilized cells were incubated with mixtures of cadmium and nickel, the specific polysaccharide content decreased to less than 0.2 g g?1 cell dry weight, resulting in a detachment of the biofilms.  相似文献   

4.
A report is given on laboratory investigations into model waters containing Cu2+-, Ni2+- or Zn2+-ions and tartrate, citrate, NTA or EDTA as complexing agents. There were determined residual concentrations of the metal ions at different shares of complexing agents, which are achieved by the precipitation with lime and chalk. Chalk is added in order to secure the required exess of calcium ions without causing an overalkalinization of the water. In the range of pH = 8…9, however, residual concentrations lower than 1 mg/1 are achieved only for copper ions in the presence of tartrate.  相似文献   

5.
Metal ions bound to particulate matter represent the greatest portion (i.e. > 95%) of the total metal content found in leachate from reactor experiments where solid waste material was anaerobically digested. This seems true even though strong complexing agents are in solution which increase the solubility of Pb and Cu by a factor up to 104… 105 over that theoretically predicted according to the solubility of the corresponding sulfide mineral. A titrimetric characterization of the metal ion binding sites of the particulate matter suggests that the metal binding properties of the particulate matter are mainly due to organic, aminoacid-type compounds (amines. thio groups, carboxylic groups) probably of bacterial origin. The change of the concentration of the binding sites with time, together with the change of the composition of the particulate matter indicates that bacterial flocs are suspended in the leachate during the switch from acidogenic to methanogenic conditions — either due to the detachment of bacterial films from the solid material by the intensive gas production or due to the formation of syntrophic methanogenic bacterial associations or a combination of both. A combination of the two factors, strong affinity of bacterial mass to metal ions on the one hand, and suspending of the bacterial mass in the leachate on the other hand, will therefore imply a great mobilizing potential for trace metals. Consequently, the highest concentrations of particulate bound Cd were found in reactor experiments where sewage sludge contaminated with Cd was added to the waste material. An increase of the concentration of dissolved cadmium over the solubility of cadmium sulfide, however, could not be observed.  相似文献   

6.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

7.
Study of Sorptional Properties of the Cation Exchanger KB-2M with Macroreticular Structure for Recovery of Zinc Ions from Sewage and Rinsing Water Although a number of ion-exchange methods have been employed for the recovery of some transition metals from industrial effluents, knowledge about ion-exchange resins with macroreticular structure is poor. The present paper describes the mechanism of sorption on such exchangers and their application for recovery of zinc from sewage rinsing water. Ion exchanger of macroreticular structure are polymers with long-chained cross-linking agents. We have synthesized carboxylic ion-exchange resins by hydrolysis of copolymerisates of methyl acrylate with different cross-linking agents: divinylbenzene, divinyl sulfide, divinyl ester of ethylene glycol and divinyl ester of di- or triethylene glycol. The sorption process on modifications of the carboxylic resins KB-2 of various structure was studied with different methods: potentiometric titration, infrared spectroscopy, electron microscopy, X-ray structural analysis. The initial zinc concentration in rinsing water was 0.05 mol/L at pH from 3 to 6. For the sorption, 0.2…1.0 g of resin were equilibrated with 100 mL of zinc solution. After equilibrium (12 h), the resin was separated from solution. The zinc ions were determined by atomic absorption spectrometry after stripping with 100 mL of 10% sulfuric acid. The distribution ratio D was calculated (D: mmole of Zn sorbed per gram of resin divided by mmole of Zn per millilitre of solution). By means of infrared spectroscopy, the mechanism of sorption of zinc ions from rinsing water was determined. There may be a possibility of the formation of complexes in the cation-exchange resin phase. It was found out in this paper that the cation-exchanger KB-2M of macroreticular structure is the most effective for the sorption of the Zn2+-ions from sewage and rinsing water.  相似文献   

8.
Three fluorinated bipyridine ligands have been designed and synthesized as chelating agents for the extraction of metal ions in supercritical CO2 (sc‐CO2). The ligand solubilities in sc‐CO2 were investigated at different temperatures and pressures, and the measured data have been correlated using a semiempirical model. The calculated results showed satisfactory agreement with the experimental data. Based on these data, metal ion extraction with the three compounds as chelating agents in sc‐CO2 was performed from spiked filter paper, whereby ligand 1 showed the highest extraction efficiency, especially for Ni2+ and Cu2+. The extraction constants, Kex, of the three chelating ligands were seen to increase with increasing extraction efficiency for the same metal ion in the same extraction system.  相似文献   

9.
The emission of large amounts of solvent vapors with exhaust air from industrial production into the environment is a serious problem. In Germany, industry‐sector‐specific threshold values are applied and technical measures for pollution reduction are required. Different techniques for exhaust air cleaning are in use but still posing problems concerning costs and reliability. For these reasons, the development of processes for exhaust air treatment is the subject of the current research. A new concept for exhaust air cleaning is introduced that combines absorption of a solvent vapor by an organic fluid and a subsequent adsorption by a molecular sieve placed in the absorber. It was managed to close the loops of solvent recovery and sorbents regeneration. In laboratory‐scale experiments it was possible to reduce an initial ethylacetate pollution of 800 mg/m3 or 349 mg C/m3 below the limit value of 75 mg C/m3 over 60 h duration. Thermogravimetric measurements assisted to define optimum conditions for solvent recovery at 180°C from the molecular sieve. One unexpected positive finding was the considerable increase in the solvent release in the presence of the absorption fluid while adsorption isotherms revealed first insight into this process.  相似文献   

10.
Introducing a concept of equivalent mass depth of flow, this study describes the phenomenon of non‐point source pollutant (metal) transport for pavement (or overland) flow in analogy with wave propagation in wide open channels. Hysteretic and normal mass rating curves are developed for runoff rate and mass of 12 dissolved and particulate‐bound metal elements (pollutants) using the rainfall‐runoff and water quality data of the 15 × 20 m2 instrumented pavement in Cincinnati, USA. Normal mass rating curves developed for easy computation of pollutant load are found to be of a form similar to Manning's, which is valid for open channel flows. Based on the hysteresis analysis, wave types for dissolution and mixing of particulate‐bound metals are identified. The analysis finds that the second‐order partial‐differential equation normally used for metal transport does not have the efficacy to describe fully the strong non‐linear phenomena such as is described for various metal elements by dynamic waves. In addition, the proportionality concept of the popular SCS‐CN concept is extended for determining the potential maximum metal mass Mp of all the 12 elements transported by a rain storm and related to the antecedent dry period (ADP). For the primary metal zinc element, Mp is found to increase with the ADP and vice versa. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A new sorbent was prepared by loading rhodamine B on Amberlite IR‐120. Various physico‐chemical parameters such as effects of adsorbate concentration, contact time, pH, and temperature on the sorption of the dye have been studied. Thermodynamic parameters (ΔH° and ΔS°) were also evaluated for the sorption of dye. Kinetic studies revealed that the sorption of the dye was best fit for pseudo‐second‐order kinetic. The metal ion uptake in different solvent systems has been explored through column studies. On the basis of distribution coefficient (Kd), some heavy metal ions of analytical interest from binary mixtures have been separated. The limit of detection (LOD) for the Ni2+ and Fe3+ metal ions was 0.81 and 0.60 µg L?1, and the limit of quantification (LOQ) was found to be 2.72 and 2.0 µg L?1. This sorbent has also been successfully applied in the analysis of multivitamin formulation. The applicability of the modified resin in the separation of heavy metals constituting real and synthetic samples has been explored.  相似文献   

12.
In static bioassays the toxicity of heavy metal ions against Lymnaea acuminata over 24 … 96 h is tested. The values of the LC50,96h for the metals tested are, in mg/l: Hg2+ ?0.023; Cu2+-0.034, Cd2+ ?0.872, Ni2+ ?2.78, Cr6+ ?5.97 and Zn2+ ?10.49. In the combined solutions of Cu2+, Ni2+ and Zn2+ at least an additive effect of toxicity occurs in the presence of two metals. The same holds for the presence of the three metals; in this case, the relative toxicity against the mixture of two metallic salt solutions appears to be slightly reduced. The acute manifestation of the toxic effect occurs within 48 h, subsequently the relative mortality decreases especially in the mixed solutions.  相似文献   

13.
Solid‐contacted Potentiometric Electrodes for Measurements of Sulfate Ions in Aqueous Solutions A solid‐contact electrode for potentiometric measurement of sulfate ions in aqueous solutions was developed and examined. The electrode is based on a PVC membrane which contains the ionophore 3‐decyl‐1,5,8‐triazacyclodecan‐2,4‐dione (DTADD). Instead of the usual inner fluid junction, a polypyrrole layer applied on the inner side of the PVC membrane was employed as inner solid contact. The performance of this electrode was compared to solid‐state sulfate‐selective electrodes with the ionophore α,α′‐bis(N′‐phenylthioureylene)‐m‐xylene (BTH) and to electrodes in the coated‐wire configuration. For the parameters sensitivity, selectivity, and long‐term stability, electrodes with the DTADD ionophore show improved properties. In the sulfate concentration range of 5·10–5...10–2 mol L–1 the slope of the response is –(26.8 ± 0.5) mV/decade. The new solid contact sulfate electrodes showed a very low drift of the electrode potential within a period of 150 days when the electrode was stored in 10–2 M Na2SO4. In Na2SO4 solutions of the pH range of 4...9 the electrode potentials were constant. The 95% response time was about 10 s when the sulfate concentration was changed from 10–4 mol L–1 to 10–3 mol L–1. The selectivity with DTADD ionophore relating to the nitrate ions is higher than the selectivity with BTH. Improvements are also made in comparison with sulfate‐selective electrodes described in the literature which contain other ionophores with fluid inner reference electrolytes.  相似文献   

14.
A sensitive, reliable, and environmentally friendly method for simple separation and preconcentration of Ag(I) traces in aqueous samples is presented prior to their flame atomic absorption spectrometric determinations. At pH 7.0, Ag(I) was separated with 2‐(2‐methoxyphenyl)benzimidazole (MPBI) as a new complexing agent and floated after adding sodium dodecyl sulfate (SDS) as a foaming reagent. The floated layer was then dissolved in proper amount of concentrated nitric acid in methanol and introduced to the flame atomic absorption spectrometer (FAAS). The effects of pH, concentration of MPBI, type and amount of surfactant as the floating agent, type and amount of eluting agent, and influence of foreign ions on the recovery of the analyte ion were investigated. Also, using a nonlinear curve fitting method, the formation constant of 1.62 × 106 was obtained for Ag(I)–MPBI complex. The analytical curve was linear in the range of 1.8 × 10?7–1.7 × 10?6 mol/L for determination of Ag(I). The relative standard deviation (RSD; N = 10) corresponding to 0.7 × 10?6 mol/L of Ag(I), the limit of detection (10 blanks), and the enrichment factor were obtained as 1.7%, 2.9 × 10?8 mol/L, and 43.0, respectively. The proposed procedure was then applied successfully for determination of silver ions in different water samples.  相似文献   

15.
16.
《国际泥沙研究》2023,38(5):724-738
Freshwater reservoirs are essential owing because of their ecological, economic, and social importance. They are particularly vulnerable to contamination, as of metal and metalloids, derived from anthropogenic activities like mining. The temporal variations in trace element concentrations (arsenic (As), mercury (Hg), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn)), enrichment, fluxes, and possible sources were evaluated by studying two sediment cores from the La Angostura (ANG) Reservoir (northwest Mexico), using 210Pb geochronology. The enrichment factors showed from null to minor enrichment for most elements, but moderate to severe enrichment of mercury (Hg). Most trace element concentrations had a detrital origin, and notable Hg concentration increases since the past decade were associated with severe drought periods, likely resulting from wildfires. The observed sediment concentrations of As and Hg can cause adverse effects on biota in the ecosystem since they are above the probable effect level (PEL). Development of strategies for metal attenuation in this reservoir is recommended and metals should be controlled until specific ecotoxicological studies are performed.  相似文献   

17.
The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.  相似文献   

18.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Dissolved organic carbon (DOC) in seepage water can combine with organic pollutants, with Al and heavy metal ions and transport them through the soil profile with a potential to contaminate groundwater. We studied the production of DOC in aerobic decomposition experiments at 8 °C and moisture close to field capacity in soils from two sites with different microbial activities (spodic dystric Cambisols with moder (SLB) and mor‐moder (SLS) layers) using 13C‐depleted plants of differing decomposability (Epilobium angustifolium and Calamagrostis epigeios). Additionally, we investigated the DOC transformation during soil passage in decomposition experiments and in the field for the sites SLB and SLS. For SLS, decomposition of Epilobium resulted in a cumulative CO2 production of 14% of the added C within 128 days. Priming effects were negligible. CO2 production for the experiments using Calamagrostis was less with 11% for SLB and 10% for SLS. Cumulative DOC production was markedly high in the Epilobium decomposition experiment, being 25 g m–2, out of which 11 g m–2 were Epilobium‐derived (2% of the added C). For the Calamagrostis experiments, cumulative productions of DOC and Calamagrostis‐derived DOC (0.1% of the added C for SLS and SLB) were much less. During the soil passage, much of the DOC was removed by sorption or decomposition processes. Field studies at SLS and SLB using 13C natural abundance showed that 13C distribution of soil organic matter increased with depth, probably mainly due to a discrimination of C isotopes by decomposing microorganisms. DOC, however, showed a depletion of 13C from –28γ PDB to –29γ (SLB at 40 cm) or –28 to –30γ (SLS at 20 cm) with depth, owing to preferential decomposition of 13C‐enriched substances or preferential adsorption. This study indicates that DOC production is strongly affected by litter composition and that significant changes in DOC composition may occur during its passage through a soil depth of 40 cm.  相似文献   

20.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号