首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstruction of Mesozoic and Cenozoic sedimentary ‘cover’ on the Precambrian shield in the Lac de Gras diamond field, Northwest Territories, Canada, has been achieved using Cretaceous and early Tertiary sedimentary xenoliths and contemporaneous organic matter preserved in volcaniclastic sediments associated with late Cretaceous to early Tertiary kimberlite pipe intrusions, and in situ, Eocene crater lake, lacustrine and peat bog strata. Percent reflectance in oil (%Ro) of vitrinite within shale xenoliths for: (i) Albian to mid-Cenomanian to Turonian ranges from > 0.27 to 0.42 %Ro (mean = 0.38 %Ro), (ii) Maastrichtian to early Paleocene from 0.24 to < 0.30%; (iii) latest Paleocene to early middle Eocene 0.15 to < 0.23 %Ro (mean = 0.18 %Ro). These levels of thermal maturity are corroborated by Rock Eval pyrolysis Tmax (°C) and VIS region fluorescence of liptinites, with wavelengths of maximum emission for sporinite, prasinophyte alginite and dinoflagellates consistent with vitrinite reflectance of 0.20 to < 0.50 %Ro. Burial–thermal history modeling, constrained by measured vitrinite reflectance and porosity of shale xenoliths, predicts a maximum burial temperature for Mid to Late Albian strata (∼115 Ma) of 60 °C with ∼1.2 to 1.4 km of Cretaceous strata in the Lac de Gras kimberlite field region prior to major uplift and erosion, which began at 90 Ma. Late Paleocene to middle Eocene volcanic crater lake lacustrine to peat bog strata were only buried to a few hundreds of meters and are in a peat-brown coal stage of thermal maturation.  相似文献   

2.
《Journal of Structural Geology》2001,23(6-7):1007-1013
The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ∼550 Ma record temperatures of ∼650–700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (∼450°C in the 40Ar–39Ar and Rb–Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ∼550 Ma for any extended period. Thus, the shear zones record temperatures that are ∼200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (∼100 MPa) and high strain rates (∼10−11 s−1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.  相似文献   

3.
Fluid migration patterns are important for understanding gas hydrate and hydrocarbon systems. However, conducting experiments on or below the seafloor is difficult because crustal fluid flow rates are usually very slow, so long term observations are needed. Temperature can be used as a good tracer for studying fluid flows. Temperatures derived from bottom-simulating reflectors (BSRs) might help to understand fluid migration patterns in shallow marine sediments. In this study, we studied 2D fluid flow patterns in two potential gas hydrate provinces offshore southwestern Taiwan: the Yung-An Ridge in the active margin and Formosa Ridge in the passive margin. We used 2D bathymetry, average seafloor temperatures and regional geothermal gradients measured by thermal probes, as constraints to construct 2D theoretical conductive temperature fields using finite element methods. We then compared the BSR-based temperature with the theoretical conductive temperature field. The results show a temperature discrepancy attributed to advective heat transfer due to fluid migration. For the Yung-An Ridge, the BSR-based temperatures are about 2 °C higher than the model: Especially in (1) near a fault zone, (2) under the eastern flank where there are strong seismic reflectors in a pseudo-3D seismic dataset, and (3) near a fissure zone. For the Formosa Ridge, our results showed a distinct decrease in temperatures around the southern peak of the ridge, where an active gas plume was found. BSR-based temperatures predict on average 2 °C lower than the model. At these two sites, the shallow temperature fields are strongly affected by 2D bathymetry. However, new insights regarding fluid flow patterns can be obtained using this model approach.  相似文献   

4.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

5.
《Quaternary Science Reviews》2007,26(22-24):2937-2957
We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes.This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (∼8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (∼5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (∼6400–5200 cal BP) and soil formation (∼5200–2200 cal BP). Localised renewed sedimentation (∼2200–200 cal BP) is linked to human activity.  相似文献   

6.
《Journal of Structural Geology》2001,23(6-7):1031-1042
The Eastern Highlands shear zone in Cape Breton Island is a crustal scale thrust. It is characterized by an amphibolite-facies deformation zone ∼5 km wide formed deep in the crust that is overprinted by a greenschist-facies mylonite zone ∼1 km wide that formed at a more shallow level. Hornblende 40Ar/39Ar plateau ages on the hanging wall decrease towards the centre of the shear zone. In the older zone (over 7.8 km from the centre), the ages are between ∼565 and ∼545 Ma; in the younger zone (within 4.5 km of the centre), they are between ∼425 and ∼415 Ma; and in the transitional zone in between, they decrease abruptly from ∼545 to ∼425 Ma. Pressures of crystallization of plutons in the hanging wall, based on the Al-in-hornblende barometer and corresponding to depth of emplacement, increase towards the centre of the shear zone and indicate a differential uplift of up to ∼28 km associated with movement along the shear zone. The age pattern is interpreted to have resulted from the differential uplift. The pressure data show that rocks exposed in the younger zone were buried deep in the crust and did not cool through the hornblende Ar blocking temperature (∼500°C) until differential uplift occurred. The 40Ar/39Ar ages in the zone (∼425–415 Ma) thus date shear zone movement or the last stage of it. In contrast, rocks in the older zone were more shallowly buried before differential uplift and cooled through the blocking temperature soon after the emplacement of ∼565–555 Ma plutons in the area, long before shear zone movement. The transitional zone corresponds to the Ar partial retention zone before differential uplift. The 40Ar/39Ar age pattern thus reflects a Neoproterozoic to Silurian cooling profile that was exposed as a result of differential uplift related to movement along the shear zone. A similar K–Ar age pattern has been reported for the Alpine fault in New Zealand. It is suggested that such isotopic age patterns can be used to help constrain the ages, kinematics, displacements and depth of penetration of shear zones.  相似文献   

7.
The interior thermal regime of a field-scale experimental waste rock pile in the Northwest Territories, Canada, was studied. Test pile construction was completed in the summer 2006, and temperature data was collected continuously since that time to February 2009. The temperature data indicates the test pile cooled over the study period, with an average heat energy release of −2.5 × 104 and −2.6 × 104 MJ in 2007 and 2008, respectively. The mean annual air temperature (MAAT) at the site was −8.9 °C during the period between 2006 and 2009, with a permafrost table at a depth of 4 m in bedrock away from the pile. Because of this cold environment, the upward movement rate of the 0 °C isotherm into the test pile at its base was approximately 1.5 m a−1 during 2007 and 2008. Thermistor strings installed immediately below the base of the test pile showed the test-pile basal temperatures remained near and below 0 °C during the study period. Furthermore, due to low rates of sulfide mineral oxidation, elevated temperatures in the interior of the test pile were not observed. The average air velocity in the pore space in July 2007 and 2008 was about one third of that during January of each year based on temperature distributions. Therefore, due to higher air velocity during the winter, it is expected that heat transfer is greater during winter.  相似文献   

8.
Chironomids and pollen were studied in a radiocarbon-dated sediment sequence obtained from a former lake near the Maloja Pass in the Central Swiss Alps (1865 m a.s.l.) to reconstruct the Lateglacial environment. Pollen assemblages imply a vegetation development around the Maloja Pass from shrub tundra at the beginning of the Allerød to coniferous forest during the early Holocene with a lowering of the timberline during the Younger Dryas. Chironomid assemblages are characterized by several abrupt shifts in dominant taxa through the Lateglacial. The occurrence of taxa able to survive hypoxia in the second part of the Allerød and during the Preboreal, and their disappearance at the onset of the Younger Dryas cold phase suggest summer thermal stratification and unfavourable hypolimnetic oxygen conditions in the palaeo-lake during the warmer periods of the Lateglacial interstadial and early Holocene. Mean July air temperatures were reconstructed using a chironomid-temperature transfer function from the Alpine region. The pattern of reconstructed temperature changes agrees well with the Greenland δ18O record and other Lateglacial temperature inferences from Central Europe. The inferred July temperatures of ca 10.0 °C during most of the Allerød were slightly lower than modern values (10.8 °C) and increased up to ca 11.7 °C (i.e., above present-day values) at the end of the Allerød. The first part of the Younger Dryas was colder (ca 8.8 °C) than the second part (ca 9.8 °C). During most of the Preboreal, the temperatures persisted within the limits of 13.5–14.5 °C (i.e., ca 3 °C above present-day values). The amplitudes of temperature changes at the Allerød–Younger Dryas–Preboreal transitions were ca 3.5–4.0 °C. The temperature reconstruction also shows three short-lived cooling events of ca 1.5–2.0 °C, which may be attributed to the centennial-scale Greenland Interstadial events GI-1d and GI-1b, and the Preboreal Oscillation.  相似文献   

9.
A series of coupled thermo-hydraulic simulations were performed on a soil–geotextile column to understand the effect of temperature on suction distribution throughout the soil column and on the hydraulic performance of the geotextile as a drainage/capillary barrier layer. Two different constant temperatures of 0 °C and 38 °C and a temperature gradient of 4 °C along the column were modeled. Changing the temperature from 0 °C to 38 °C did not have a significant effect on the suction head distribution in the soil–geotextile column. The temperature gradient resulted in appreciable thermal vapor flow and changes in suction head and hydraulic conductivity of the geotextile. During drainage, the temperature gradient and lower temperature at the top of the column increased suction in the geotextile and its ability to function as a capillary barrier. During capillary rise, the temperature gradient and lower temperature at the top of the column decreased the suction in the geotextile and its ability to function as a capillary barrier. Changing the direction of the thermal gradient reversed the water vapor flow direction and its effect on the suction in the geotextile. A temperature gradient did not have a noticeable effect on the suction head of the geotextile when positive pore pressure was developed in the geotextile and adjacent soil during drainage.  相似文献   

10.
《Precambrian Research》2006,144(1-2):69-91
By using unusual combinations of demagnetization techniques, Proterozoic paleomagnetic vectors and paleopoles are provided for two recently discovered post-tectonic Proterozoic units near Armstrong, northern Ontario, and also for well-dated Gunflint Formation, which by previous techniques yielded problematical paleomagnetic data. The first paleomagnetic data are provided also for the Seagull Pluton and Inspiration Sills. Characteristic remanent magnetizations (ChRM) for the Pillar Lake Lavas indicate a Keweenawan age, more specifically ∼1000–1040 Ma by comparison with the well-established APWP for the Late Proterozoic Superior craton. Four combinations of demagnetization techniques yield declinations in the range 108–133° and inclinations in the range −65 to −70° (n = 100), which define paleopoles near 200 W/48 N corresponding to a location on the Keweenawan APWP near ∼1040 Ma. In the underlying basement a recently discovered Proterozoic igneous complex, the Waweig Troctolitic Complex, yields new paleomagnetic data with declination and inclination 42/−54 (n = 14) defining a paleopole at 238 W/09 N. Its ages may be 1400–1600 or ∼2000 Ma by comparison with the presently available, ambiguous and sparsely populated APWP. The first paleomagnetic results for the Seagull Pluton (U–Pb age 1113 Ma) yield a mean declination of 87.4/−75.7 (n = 32) corresponding to a Keweenawan paleopole near 233/42 N, consistent with other paleopoles near ∼1200 Ma. Tuffs of the oft studied but problematical Gunflint Formation (U–Pb age1878 Ma) yielded stable and presumably primary vectors using several different demagnetization techniques on the same specimens. Their mean primary declination and inclination ∼303/+48.8 (n = 17) yields a paleopole now located near 178 W/42 N, comparable with the published locations of paleopoles of ∼2000 Ma. Of broader interest, we recognized that low temperature demagnetization preceding conventional demagnetization techniques enhanced the isolation of characteristic vectors. Combining the conventional techniques (thermal and AF demagnetization) also improved the resolution of characteristic vectors not achieved by other means. Low grade metamorphism affected the non-tectonized Proterozoic cover to the Canadian shield, due to burial or hydrothermal effects, obfuscating or erasing primary vectors in some lithologies and especially at certain sites.  相似文献   

11.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

12.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

13.
Modeling of the seismic, thermal, and density structure of the Siberian craton lithospheric mantle at depths of 100-300 km has been performed along the superlong Meteorite and Rift seismic profiles. The 2D velocity sections reflect the specific features of the internal structure of the craton: lateral inhomogeneities, seismic-boundary relief at depths of ~ 100, 150, 240, and 300 km, velocities of 8.3-8.7 km/s, and the lack of low-velocity zone in the lower lithosphere. Mapping of the thermal state along the Meteorite and Rift profiles shows a significant temperature decrease in the cratonic mantle as compared with the average temperatures of the surrounding Phanerozoic mantle (> 300 °C) estimated from the global reference model AK135. Lateral temperature variations, reflecting the thermal anomalies in the cratonic keel, are observed at depths of < 200 km (with some decrease in temperature in the central part of the craton), whereas at depths of > 200 km, temperature variations are negligible. This suggests the preservation of residual thermal perturbations at the base of the lithosphere, which must lead to the temperature equalization in the transition zone between the lithosphere and the asthenosphere. Variations in chemical composition have a negligible effect on the thermal state but affect strongly the density structure of the mantle. The results of modeling admit a significant fertilization of matter at depths more than 180-200 km and stratification of the cratonic mantle by chemical composition. The thicknesses of chemical (petrologic) and thermal boundary layers beneath the Siberian craton are estimated. The petrologic lithosphere is localized at depths of ~ 200 km. The bottom of the thermal boundary layer is close to the 1450 °C isotherm and is localized at a depth of 300 km, which agrees with heat flow and seismic-tomography data.  相似文献   

14.
《Comptes Rendus Geoscience》2007,339(3-4):212-222
A coupled climate–geochemical model of new generation (GEOCLIM) is used to investigate the possible causes of the initiation of snowball glaciations during Neoproterozoic times. This model allows the calculation of the partial pressure of atmospheric CO2 simultaneously with the climate at the continental surface with a rough 2D spatial resolution (10° lat. × 50° long.). We calculate that the breakup of the Rodinia supercontinent, starting 800 Myr ago, results in a global climatic cooling of about 8 °C triggered by enhanced consumption of atmospheric CO2 resulting from increased runoff over continental surfaces. This increase in runoff is driven by the opening of oceanic basins resulting in an increase of soil moisture sources close to continental masses. This climatic effect of the supercontinent breakup is particularly strong within the 800–700 Ma interval since all continents are located in the equatorial area, where temperature and runoff conditions optimize the consumption of CO2 through weathering processes. However, this effect alone is insufficient to trigger snowball. We propose that the efficient weathering of fresh basaltic surfaces that erupted during the Rodinia breakup, and were transported to the humid equatorial area through continental plate motion, contributed the necessary CO2 sink that triggered the ca. 730-Ma Sturtian glacial event. Simulations of the GEOCLIM model for the ca 580-Ma Gaskiers ice age, where all continents are centered on the South Pole, shows that no snowball glaciation can be initiated. The calculated CO2 partial pressure remains above 1000 ppmv, while a threshold of less than 80 ppmv is required to initiate a snowball glaciation. At that time, a polar configuration does not allow the onset of total glaciation. Nevertheless, a regional glaciation is simulated by the GEOCLIM when the climatic and geochemical (i.e. weathering related) effects of the Pan-African orogeny (∼600 Ma) are taken into account. Finally, the question of the role of the paleogeographic setting in the Marinoan snowball event (∼635 Ma) is still an open question, since no reliable Marinoan paleogeographic reconstruction exists due to the paucity of paleomagnetic data.  相似文献   

15.
We have conducted a paleomagnetic investigation on the Middle–Upper Jurassic marine strata exposed in the hanging wall of the Tanggula Thrust system near the Yanshiping area, northern Tibet. Progressive demagnetization experiments successfully isolated stable magnetization over a broad spectrum of demagnetization temperatures. The mean direction of the characteristic remanent magnetizations for the Middle–Late Jurassic Yanshiping Group in stratigraphic coordinates (D/I (Declination/Inclination) = 5.6°/60.3°, k = 22.9, α95 = 12.9°, N = 7 s) is much more clustered than the mean direction in geographic coordinates (D/I = 345.5°/37.2°, k = 2.5, α95 = 48.4°), indicating magnetization was not acquired after folding. Although the conventional fold test is positive, incremental untilting test on the characteristic remanent magnetization reveals that a maximum value of precision parameter k occurs at 82.1 ± 4.6% untilting (D/I = 3.3°/57.8°, k = 43.9, α95 = 9.2°), which indicates the ChRMs are probably acquired during Late Cretaceous folding. This synfolding magnetization component is therefore secondary. The corresponding pole position (84.4°N, 119.4°E with dp/dm = 13.5/9.9°) is inconsistent with Jurassic–Early Cretaceous paleopoles of the region, but the paleolatitude is consistent with the Late Cretaceous paleolatitude observed in the Qiangtang terrane and its periphery. The synfolding component is carried by both magnetite and hematite, which were identified by isothermal remnant magnetization acquisition experiments, unblocking temperatures of stable magnetic components, and Curie temperature determination and correlated with observed hydrothermal veins. Available geological evidences indicate that the synfolding magnetization is probably the result of chemical remagnetization caused by orogenic fluids or hydrothermal sources during the early uplift of the Tibetan Plateau.  相似文献   

16.
Even casual observations of continental hot springs reveal that photosynthesis has its limits. In an effort to explore the transition to photosynthesis, field measurements of temperature and pH were made at 996 hot spring locations at Yellowstone National Park ranging from 14° to 94 °C and pH from 0.8 to 9.7. In addition, sulfide measurements were made in 426 of these locations showing concentrations up to 8820 μg L? 1 total sulfide. These data indicate that the previously established upper temperature (73–75 °C) for the transition to photosynthesis is reached in many basic hot springs, but that the transition occurs at lower temperature with decreasing pH below ~ 6.5. As an example, no strong evidence for photosynthesis was found above 45 °C at pH ~ 2. In several locations, photosynthesis appears to be suppressed despite temperatures and pH values that permit photosynthesis elsewhere. Sulfide concentrations may be responsible for the suppression of photosynthesis at these sites. Total sulfide concentrations were observed to decrease downstream in hot spring outflow channels. Abiotic processes (degassing, oxidation, mineral precipitation, etc.) are too slow to account for these decreases, suggesting an explanation from microbial sulfide oxidation that is supported by field experiments. Microbial sulfide oxidation may determine the ultimate suitability of some hot springs for microbial photosynthesis.  相似文献   

17.
The city of Bath is a World Heritage site and its thermal waters, the Roman Baths and new spa development rely on undisturbed flow of the springs (45 °C). The current investigations provide an improved understanding of the residence times and flow regime as basis for the source protection. Trace gas indicators including the noble gases (helium, neon, argon, krypton and xenon) and chlorofluorocarbons (CFCs), together with a more comprehensive examination of chemical and stable isotope tracers are used to characterise the sources of the thermal water and any modern components. It is shown conclusively by the use of 39Ar that the bulk of the thermal water has been in circulation within the Carboniferous Limestone for at least 1000 years. Other stable isotope and noble gas measurements confirm previous findings and strongly suggest recharge within the Holocene time period (i.e. the last 12 kyr). Measurements of dissolved 85Kr and chlorofluorocarbons constrain previous indications from tritium that a small proportion (<5%) of the thermal water originates from modern leakage into the spring pipe passing through Mesozoic valley fill underlying Bath. This introduces small amounts of O2 into the system, resulting in the Fe precipitation seen in the King’s Spring. Silica geothermometry indicates that the water is likely to have reached a maximum temperature of between 69–99 °C, indicating a most probable maximum circulation depth of ∼3 km, which is in line with recent geological models. The rise to the surface of the water is sufficiently indirect that a temperature loss of >20 °C is incurred. There is overwhelming evidence that the water has evolved within the Carboniferous Limestone formation, although the chemistry alone cannot pinpoint the geometry of the recharge area or circulation route. For a likely residence time of 1–12 kyr, volumetric calculations imply a large storage volume and circulation pathway if typical porosities of the limestone at depth are used, indicating that much of the Bath-Bristol basin must be involved in the water storage.  相似文献   

18.
The Camie River uranium deposit is located in the southeastern part of the Paleoproterozoic Otish Basin (Québec). The uranium mineralization consists of disseminated and vein uraninite and brannerite precipitated close to the unconformity between Paleoproterozoic fluviatile, pervasively altered, sandstones and conglomerates of the Matoush Formation and the underlying sulfide-bearing graphitic schists of the Archean Hippocampe greenstone belt. Diagenetic orange/pink feldspathic alteration of the Matoush Formation consists of authigenic albite cement partly replaced by later orthoclase cement, with the Na2O content of clastic rocks increasing with depth. Basin-wide green muscovite alteration affected both the Matoush Formation and the top of the basement Tichegami Group. Uraninite with minor brannerite is mainly hosted by subvertical reverse faults in basement graphitic metapelites ± sulfides and overlying sandstones and conglomerates. Uranium mineralization is associated with chlorite veins and alteration with temperatures near 320 °C, that are paragenetically late relative to the diagenetic feldspathic and muscovite alterations. Re-Os geochronology of molybdenite intergrown with uraninite yields an age of 1724.0 ± 4.9 Ma, whereas uraninite yields an identical, although slightly discordant, 1724 ± 29 Ma SIMS U-Pb age. Uraninite has high concentrations in REE with flat REE spectra resembling those of uraninite formed from metamorphic fluids, rather than the bell-shaped patterns typical of unconformity-related uraninite. Paragenesis and geochronology therefore show that the uranium mineralization formed approximately 440 million years after intrusion of the Otish Gabbro dykes and sills at ∼2176 Ma, which constrains the minimum age for the sedimentary host rocks. The post-diagenetic stage of uraninite after feldspathic and muscovite alterations, the paragenetic sequence and the brannerite-uraninite assemblage, the relatively high temperature for the mineralizing event (∼320 °C) following the diagenetic Na- and K-dominated alteration, lack of evidence for brines typical of unconformity-related U deposits, the older age of the Otish Basin compared to worldwide basins hosting unconformity-related uranium deposits, the large age difference between basin fill and mineralization, the older age of the uranium oxide compared to ages for worldwide unconformity-related U deposits, and the flat REE spectra of uraninite do not support the previous interpretation that the Camie River deposit is an unconformity-associated uranium deposit. Rather, the evidence is more consistent with a PaleoProterozoic, higher-temperature hydrothermal event at 1724 Ma, whose origin remains speculative.  相似文献   

19.
The mid-late Eocene “Valley of Whales” in the Fayum province of Egypt contains hundreds of marine-mammals’ skeletons. Given its paleontological importance, we carried out a paleomagnetic study of the fossil-bearing formations. A sequence of basalts directly overlying the upper Eocene rocks in three distant clusters within a 25 km-long NW–SE graben in the southwestern part of the area was also studied. Thermal demagnetization of three-axis IRM was used to identify and eliminate sites dominated by hematite and/or goethite as potential remanence carriers. Progressive thermal demagnetization of the NRM isolated a characteristic NNE–SSW dual-polarity direction with a shallow inclination that passes both tilt and reversal tests. The mean tilt-corrected direction of the sedimentary formations is D/I = 16°/30° (k = 50, α95 = 3°) yielding a paleomagnetic pole at 70°N/159°E. The anisotropy of magnetic susceptibility (AMS) indicated that the observed inclinations were free from inclination shallowing, as did the nearly identical characteristic remanence of the overlying basalt flows (with a tilt-corrected reversed-polarity direction of D/I = 198°/−28° (k = 38, α95 = 7°) and a pole at 68°N/158°E). The new paleopoles place the Fayum province at a lower paleolatitude (15–17°N) than today (29.5°N), and point to the possible prevalence of tropical climate in northeast Africa during mid-late Eocene times. This tropical position is nearly identical to the paleolatitudes extrapolated from the mean of 36 coeval poles rotated from the other major cratons and from Africa itself. The declinations show a minor easterly deviation from those predicted by extrapolation from other continents. This is interpreted as due to a small clockwise rotation internal to NE Africa, possibly related to Red Sea/Gulf of Suez rifting after the late Eocene. The alternative explanation that the geomagnetic field had a non-zonal non-dipole field contribution is not favored.  相似文献   

20.
We conducted paleomagnetic investigations on limestone from the Lower Carboniferous Huaitoutala Formation in the Qaidam Basin near Delingha City, Qinghai Province, China. The characteristic remanent magnetization (D = 5.8°, I =  25.7°, k = 114.3, α95 = 4.8°) passes a fold test and indicates a paleopole position of − 39.2°N, 90.4°E and a paleolatitude of 13.5°N for the Qaidam Block for the early Carboniferous. Based on global tectonic reconstructions and paleontological evidence, we suggest that the Qaidam Block was adjacent to, but independent from, the North China, South China, Alashan–Hexi and Tarim blocks at this time. This result suggests that Pre-Carboniferous sutures reported around the Qaidam Basin represent collisional events within Gondwana, rather than the final sutures that gave rise to the present tectonic configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号