首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous methods have been proposed to assess the axial capacity of pile foundations. Most of the methods have limitations and therefore cannot provide consistent and accurate evaluation of pile capacity. However, in many situations, the methods that correlate cone penetration test (CPT) data and pile capacity have shown to provide better results, because the CPT results provide more reliable soil properties. In an attempt to obtain more accurate correlation of CPT data with axial pile capacity, gene expression programming (GEP) technique is used in this study. The GEP is a relatively new artificial intelligent computational technique that has been recently used with success in the field of engineering. Three GEP models have been developed, one for bored piles and two other models for driven piles (a model for each of concrete and steel piles). The data used for developing the GEP models are collected from the literature and comprise a total of 50 bored pile load tests and 58 driven pile load tests (28 concrete pile load tests and 30 steel pile load tests) as well as CPT data. For each GEP model, the data are divided into a training set for model calibration and an independent validation set for model verification. The performances of the GEP models are evaluated by comparing their results with experimental data and the robustness of each model is investigated via sensitivity analyses. The performances of the GEP models are evaluated further by comparing their results with the results of number of currently used CPT-based methods. Statistical analyses are used for the comparison. The results indicate that the GEP models are robust and perform well.  相似文献   

2.
Twelve methods to determine axial pile capacity directly based on cone penetration test (CPT) and piezocone penetration test (CPTU) data are presented, compared and evaluated. Analyses and evaluation were conducted on three types of piles of different size and length. All the tested piles have failed at the end of static load test. Both the CPT methods and the CPTU methods were used to estimate the load bearing capacities of the investigated piles (Qp). The static load test was performed to determine the measured load bearing capacities (Qm). The pile capacities determined through different methods were compared with the measured values obtained from the static load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp/Qm. Results of the analyses showed that the best methods for determining pile capacity are the two CPTU methods. Furthermore, the CPTU method is simple, easy to apply, and not influenced by the subjective judgements of operating staff. Therefore, it is quite suitable for the application in pile engineering practice.  相似文献   

3.
ABSTRACT

This paper describes compressive static load tests of concrete driven piles confined by Carbon Fibre Reinforced Polymer (CFRP). The tested piles include one concrete pipe pile and one concrete rectangular pile which are all partially confined by CFRP, and other two piles with the same dimensions without CFRP application. Tests program was performed to obtain the behaviours of these composite piles. Four Static Loading Tests (SLTs) were conducted and the results shown that those two types of composite pile demonstrate less vertical displacement with the same loading of traditional concrete piles. Furthermore, the traditional methods of Load-settlement (Q-s) curves, Settlement-lg (Load) (s-lgQ) curves and Settlement-lg (Time) curves are analysed. Due to un-plunging condition, the interpretation methods of Davisson’s, DeBeers, Double-Tangent as well as Chin’s methods are demonstrated for the ultimate bearing capacity of these four piles. It is concluded that the CFRP confinement increased the ultimate bearing capacity and this composite material can be perfectly applied in geotechnical condition.  相似文献   

4.
The concrete-cored deep cement mixing (DCM) pile is a new kind of composite pile created by inserting precast core pile into the DCM column socket and has only been used in a few projects to date. The bearing mechanism of concrete-cored DCM pile composite foundation has not been investigated systematically. In this paper, plate load tests (PLT) on single pile composite foundation were conducted in Nanjing–Changzhou expressway, Xinhua district in Jiangyin city and Nanjing surrounding (NS) expressway. Following the results of the PLT, a comparison of ultimate bearing capacity between composite foundation reinforced by concrete-cored DCM pile and DCM column was made. During the PLT process, the vertical stress of surrounding soil and DCM column socket was measured using pressure cells. The vertical stress of precast core pile was obtained using steel stress gauge welded onto the reinforcement. Based on the vertical stress of surrounding soil, DCM column socket and precast core pile, the skin friction and load sharing ratio were obtained. The variation in surrounding soil properties depending on the installation of concrete-cored DCM pile was also analyzed using the results from cone penetration tests (CPT) taken in NS expressway. With the analysis of results for stress tests and CPT, the bearing mechanisms of composite foundation reinforced by concrete-cored DCM pile are obtained.  相似文献   

5.
Pile load tests are used to refine designs and for quality assurance. They can also be used to verify the reliability of piles and pile groups. Stochastic methods have previously been developed to verify the reliability of single piles. A general stochastic method to verify the reliability of pile groups is developed in this paper. The method can be used to assess the reliability of groups where pile tests have been conducted to the ultimate capacity, to below the ultimate capacity but exceeding specified capacity, and where pile tests fail to achieve the specified capacity. In the latter case, the method allows decisions to be made as to whether the reliability of the entire pile group is satisfactory or whether additional piles need to be installed.  相似文献   

6.
Cone penetration test (CPT) is one of the most common in situ tests which is used for pile design because it can be realized as a model pile. The measured cone resistance (qc) and sleeve friction (fs) usually are employed for estimation of pile unit toe and shaft resistances, respectively. Thirty three pile case histories have been compiled including static loading tests performed in uplift, or in push with separation of shaft and toe resistances at sites which comprise CPT or CPTu sounding. Group method of data handling (GMDH) type neural networks optimized using genetic algorithms (GAs) are used to model the effects of effective cone point resistance (qE) and cone sleeve friction (fs) as input parameters on pile unit shaft resistance, applying some experimentally obtained training and test data. Sensitivity analysis of the obtained model has been carried out to study the influence of input parameters on model output. Some graphs have been derived from sensitivity analysis to estimate pile unit shaft resistance based on qE and fs. The performance of the proposed method has been compared with the other CPT and CPTu direct methods and referenced to measured piles shaft capacity. The results demonstrate that appreciable improvement in prediction of pile shaft capacity has been achieved.  相似文献   

7.
This study explores the potential of adaptive neuro-fuzzy inference systems (ANFIS) for prediction of the ultimate axial load bearing capacity of piles (Pu) using cone penetration test (CPT) data. In this regard, a reliable previously published database composed of 108 datasets was selected to develop ANFIS models. The collected database contains information regarding pile geometry, material, installation, full-scale static pile load test and CPT results for each sample. Reviewing the literature, several common and uncommon variables have been considered for direct or indirect estimation of Pu based on static pile load test, cone penetration test data or other in situ or laboratory testing methods. In present study, the pile shaft and tip area, the average cone tip resistance along the embedded length of the pile, the average cone tip resistance over influence zone and the average sleeve friction along the embedded length of the pile which are obtained from CPT data are considered as independent input variables where the output variable is Pu for the ANFIS model development. Besides, a notable criticism about ANFIS as a prediction tool is that it does not provide practical prediction equations. To tackle this issue, the obtained optimal ANFIS model is represented as a tractable equation which can be used via spread sheet software or hand calculations to provide precise predictions of Pu with the calculated correlation coefficient of 0.96 between predicted and experimental values for all of the data in this study. Considering several criteria, it is represented that the proposed model is able to estimate the output with a high degree of accuracy as compared to those results obtained by some direct CPT-based methods in the literature. Furthermore, in order to assess the capability of the proposed model from geotechnical engineering viewpoints, sensitivity and parametric analyses are done.  相似文献   

8.

Piles are structural members made of steel, concrete, or wood installed into the ground to transfer superstructure loads to the soil. Nowadays, many structures are built on poor lands, and therefore piles have crucial roles in such structures. Performing in-situ tests such as cone penetration (CPT) and piezocone penetration tests (CPTu) have always been of great importance in designing piles. These tests have a brilliant consistency with reality, and as a result, the outcome data can be used in order to achieve reliable pile designing models and reduce uncertainty in this regard. In this paper, the capability of various CPT and CPTu based methods developed from 1961 to 2016 has been investigated using four statistical methods. Such CPT and CPTu based methods are adopted for direct prediction of axial bearing capacity of piles using CPT and CPTu field data. For this purpose, 61 sets of field data prepared from CPT and CPTu have been collected. The data sets were utilized in order to calculate the axial bearing capacity of piles (QE) through 25 different methods. In addition, the measured axial pile capacities (QM) have been collected, recorded and prepared from field static load tests, respectively. Then, four different statistical approaches have been applied to assess the accuracy of these methods. Finally, the most reliable and accurate methods are presented.

  相似文献   

9.
静力触探探测具有原位性、连续性、高效性以及高分辨率的优点,利用海洋静力触探探测成果计算海上平台桩基承载力具有非常大的应用空间。以胜利油田埕岛海域某平台为例,使用ROSON100型海洋静力触探仪对平台各桩腿开展原位探测,同步进行钻探取样及室内土工参数测试。分别利用静力触探和钻探取样测试成果计算了平台桩基承载力,对比讨论了3种桩基承载力计算方法之间的异同。结果表明:3种方法对应的桩侧摩阻力随埋深变化整体趋势基本一致;基于一定区域工程经验,钻探规范法和静探间接法得到的桩端阻力、单桩极限承载力基本吻合,而静探直接法得到的桩端阻力和单桩极限承载力相较前两者明显偏大;考虑以粉砂作为持力层的前提下3种桩基极限承载力计算方法表现出较好的兼容性。研究成果可为海洋工程桩基承载力计算提供新的借鉴,具有一定科学意义和应用价值。  相似文献   

10.
刚性荷载下现浇X形桩复合地基极限承载力特性研究   总被引:1,自引:0,他引:1  
吕亚茹  丁选明  孙甲  孔纲强 《岩土力学》2012,33(9):2691-2696
现浇X形桩是通过等截面周边扩大原理,将圆形截面的正拱变为反拱而成的。作为一种新型的异型截面桩,目前对其极限承载力的计算仍采用规范中建议的经验公式。结合南京桥北污水处理厂地基处理工程的现场静载荷试验,应用有限元软件ABAQUS,建立刚性荷载下现浇X形混凝土桩复合地基的模型,模拟不同桩身模量、桩周土模量、桩长、褥垫层厚度和模量等参数下现浇X形混凝土桩复合地基的荷载-沉降关系,从而得出复合地基的极限承载力。结果表明,现浇X形桩单桩复合地基极限承载力比等截面面积的圆形桩单桩复合地基增大20%以上,X形桩4桩梅花形复合地基极限承载力比等截面面积的圆形桩大12.35%。极限承载力随桩身模量、褥垫层模量、桩周土体模量或者桩长的增大而增大,而且在众多影响因素中桩周土体模量对复合地基极限承载力的影响最为明显。  相似文献   

11.
旁压试验确定上海软土地区的单桩承载力   总被引:1,自引:0,他引:1  
该文搜集上海地区三十多项旁压试验资料工程,以及近133组静载荷试验,经过分析、统计、比较,得出根据旁压试验确定单桩竖向极限承载力的公式,表明该公式的普遍适用性,是对静载试验方法的有益补充。同时对379组分别采用旁压和静探试验估算的单桩承载力的比较,表明采用旁压试验方法估算的单桩承载力与静探方法基本吻合。  相似文献   

12.
针对纵截面异形桩(扩底桩和楔形桩)、等混凝土用量常规等直径桩的水平向承载特性进行对比模型试验研究,测得不同水平荷载等级下扩底桩和楔形桩的内力、变形、极限承载力和桩侧土压力分布等变化规律特性;初步探讨3种桩型的水平极限承载特性和桩侧土压力分布规律。考虑纵向截面异形效应,基于水平土抗力与水平位移(p-y)曲线法建立纵截面异形桩水平向承载特性理论计算方法,进一步分析弯矩分布规律,并开展影响因素分析。研究结果表明,在当前试验条件下,等混凝土用量楔形桩的水平向承载力比等直径桩的高,砂性土和黏性土中楔形桩水平向极限承载力约分别为等直径桩的1.25倍和1.33倍。相关研究成果可为今后类似土层下水平受荷纵截面异形桩的设计与计算提供参考依据。  相似文献   

13.
孟振  陈锦剑  王建华  尹振宇 《岩土力学》2012,33(Z1):141-145
通过室内模型试验,研究砂土中螺纹桩的竖向承载特性,比较分析螺纹桩与普通直桩承载性能的差异以及螺距对螺纹桩承载力的影响。静载荷试验后进行一系列土工试验,研究桩周土的物理力学性质。试验结果表明,在相同条件下螺纹桩的极限承载力约是普通直桩极限承载能力的1~4倍,极限状态下的平均桩侧阻力是普通直桩的3~4倍;在一定范围内,随着螺距的减小,螺纹桩的桩侧阻力可以得到有效的发挥,极限承载能力和控制沉降的能力逐渐增强。  相似文献   

14.
The determination of ultimate capacity of laterally loaded pile in clay is a key parameter for designing the laterally loaded pile. The available methods for determination of ultimate resistance of pile in clay are not reliable. This study investigates the potential of a support vector machine (SVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. The SVM, which is firmly based on statistical learning theory, uses a regression technique by introducing an ?-insensitive loss function. A sensitivity analysis has been carried out to determine the relative importance of the factors affecting ultimate capacity. The results show that SVM has the potential to be a practical tool for prediction of the ultimate capacity of pile in clay.  相似文献   

15.
16.
循环温度场作用下PCC能量桩热力学特性模型试验研究   总被引:5,自引:0,他引:5  
PCC能量桩是河海大学岩土所开发的一种新型能量桩技术。在常规桩基静载荷模型试验基础上,将PCC能量桩放置在南京典型砂土中,并通过导热管内水体的循环对模型桩体施加温度场,以模拟PCC能量桩在实际运行过程中的承载力特性与受力机制,PCC能量桩先加载至工作荷载(极限荷载的一半),再施加热-冷循环一次,最后加载至极限荷载,测得不同温度下PCC能量桩的荷载-位移关系曲线、桩身应力-应变关系曲线等变化规律。试验结果表明,能量桩换热过程中,热量更容易从桩体传向土体(即夏季模式的热循环);热循环及制冷循环都明显改变了桩顶位移值,且往复循环作用下产生的塑性变形不能完全恢复,其积累变形可能危害上部结构安全;桩身受温度场作用产生的热应力相对较大,且不同约束条件下其变化值有所差异;在制冷循环下,桩底部甚至可能产生较大拉应力。  相似文献   

17.
张俊仁 《吉林地质》2011,30(1):139-142
本文通过实例,用静力触探资料进行了单桩竖向极限承载力标准值的估算,并把估算结果和传统的经验参数法估算结果进行了对比,同时,又用单桩静力载荷试验资料进行了验证,从而说明该方法在不断积累经验后,在本地区是可以推广应用的。  相似文献   

18.
Pile foundations are usually used when the conditions of the upper soil layers are weak and unable to support the super-structural loads. Piles carry these super-structural loads deep into the ground. Therefore, the safety and stability of pile-supported structures depends largely on the behavior of the piles. In addition, accurate prediction of pile behavior is necessary to ensure appropriate structural and serviceability performance. In this paper, an ANN model is developed for predicting pile behavior based on the results of cone penetration test (CPT) data. Approximately 500 data sets, obtained from the published literature, are used to develop the ANN model. The paper compares the predictions obtained by the ANN with those given by a number of traditional methods and it is observed that the ANN model significantly outperforms the traditional methods. An important advantage of the ANN model is that the complete load-settlement relationship is captured. Finally, the paper proposes a series of charts for predicting pile behavior that will be useful for pile design.  相似文献   

19.
黄晓晖  龚维明  穆保岗  黄挺  谢日成 《岩土力学》2014,35(11):3148-3156
采用均匀设计法对桩长、桩距、垫层、桩帽对减沉桩承载性能的影响进行室内模型试验研究。通过6组3×4群桩试验,对不同沉管隧道荷载作用下的土压力、桩身轴力及沉管隧道沉降进行测定。由于采用均匀设计,运用数理统计理论工具对试验数据进行相关性分析和回归分析,从而区别于传统的单因素优选法,使得同时考察多因素、多水平作用下对沉管隧道沉降的综合影响成为可能。分析结果表明,桩长、桩距、桩帽对沉管隧道沉降的影响随着外荷载的增加而改变;垫层厚度和桩帽存在交互作用,两者共同对沉管沉降产生影响。最后,利用拟合结果进行反演分析,在总样本为432种减沉桩组合中找出符合沉降控制要求的最优化组合。反演结果在后续模型试验中得到较好的验证。  相似文献   

20.
郭楠  陈正汉  黄雪峰  杨校辉 《岩土力学》2015,36(Z2):603-609
西北地区深大基础工程日益增多,兼顾基础抗浮和耐久性问题的研究空白,借助西宁火车站综合改造工程,引入大直径布袋桩技术,有效解决了基础抗浮和耐久性问题;选择6根试桩进行了现场单桩抗拔载荷试验,最大加载量为9 060 kN;运用MATLAB软件分别拟合出3种抗拔极限承载力预测函数模型的曲线,同时运用PLAXIS软件对不同等级荷载桩-土位移进行模拟,并与实测的荷载-位移曲线对比分析。研究发现:双曲线和幂函数模型较适合此类抗拔桩极限承载力预测;本地区类似地基预测大直径缓变形抗拔桩极限荷载所需的极限位移标准应由0.030D减小为0.025D;仅根据土层的物理力学特征确定抗拔桩桩周土的极限摩阻力不够完善,至少还要考虑埋深不同对具有相似物理力学特征土层性质的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号