首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l’Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01–0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.  相似文献   

2.
Remote sensing-based timber volume estimation is key for modelling the regional potential, accessibility and price of lignocellulosic raw material for an emerging bioeconomy. We used a unique wall-to-wall airborne LiDAR dataset and Landsat 7 satellite images in combination with terrestrial inventory data derived from the National Forest Inventory (NFI), and applied generalized additive models (GAM) to estimate spatially explicit timber distribution and volume in forested areas. Since the NFI data showed an underlying structure regarding size and ownership, we additionally constructed a socio-economic predictor to enhance the accuracy of the analysis. Furthermore, we balanced the training dataset with a bootstrap method to achieve unbiased regression weights for interpolating timber volume. Finally, we compared and discussed the model performance of the original approach (r2 = 0.56, NRMSE = 9.65%), the approach with balanced training data (r2 = 0.69, NRMSE = 12.43%) and the final approach with balanced training data and the additional socio-economic predictor (r2 = 0.72, NRMSE = 12.17%). The results demonstrate the usefulness of remote sensing techniques for mapping timber volume for a future lignocellulose-based bioeconomy.  相似文献   

3.
Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985–2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985–2000 (−0.74 g kg−1/10a, p < 0.001), and increased within 2000–2015 (0.79 g kg−1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.  相似文献   

4.
Government and NGO funded conservation programs are being implemented in developing countries with the potential benefit of reduced sediment inflow into fresh water lakes. However, these claims are difficult to verify due to limited historical sediment concentration data in lakes and rivers. Remote sensing can potentially aid in monitoring sediment concentration. With almost daily availability over the past ten years and consistent atmospheric correction applied to the images, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter images are potential resources capable of monitoring future concentrations and reconstructing historical sediment concentration records. In this paper, site-specific relationships are developed between reflectance in near-infrared (NIR) images and three factors: total suspended solids (TSS), turbidity and Secchi depth for Lake Tana near the mouth of the Gumara River. The first two sampling campaigns on November 27, 2010 and May 13, 2011 are used in calibration. Reflectance in the NIR varies linearly with turbidity (R2 = 0.89) and TSS (R2 = 0.95). Secchi depth fit best to an exponential relation with R2 of 0.74. The relationships are validated using a third sample set collected on November 7, 2011 with RMSE of 11 Nephelometric Turbidity Units (NTU) for Turbidity, 16.5 mg l−1 for TSS and 0.12 meters for Secchi depth. The MAE was 10% for TSS, 14% for turbidity and 0.1% for Secchi depth. Using the relationship for TSS, a 10-year time series of sediment concentration in Lake Tana near the Gumara River was plotted. It was found that after the severe drought of 2002 and 2003 the concentration in the lake increased significantly. The results showed that MODIS images are potential cost effective tools to monitor suspended sediment concentration and obtain a past history of concentration for evaluating the effect of best management practices.  相似文献   

5.
It is challenging to develop Landsat-5 TM (TM5) image-based retrieval models for estimating the suspended particulate matter concentration (CSPM) in water when missing coincident ground CSPM measurements. This study, with the Poyang Lake in China as a case study, proposed an approach for developing TM5-based CSPM retrieval models with the assistance of moderate resolution imaging spectroradiometer (MODIS) images. After validation with an independent dataset, a cubic CSPM retrieval model of 250 m MODIS red band was used to estimate the CSPM values at 100 sampling points from the MODIS images (MODIS-based CSPM) captured at three time periods. The MODIS-based CSPM values at the time period with the largest CSPM variation were combined with their coincident TM5 image reflectance for TM5-based model calibrations. The linear, quadratic, cubic, power and exponential models of MODIS-based CSPM against TM5 single bands and their combinations were calibrated, respectively. Four best-fitting TM5-based CSPM models were selected to retrieve the CSPM values at 100 sampling points from the TM5 images (TM5-based CSPM) at the other two time periods, and the coincident MODIS- and TM5-based CSPM values were compared to assess TM5-based model performances. Model calibration results showed that the cubic and exponential models of TM5 red band (band 3) and red subtracting mid-infrared band (band 5) obtained the best fitting for estimating CSPM from the TM5 image on 12 August 2005, and they explained 94–97% of the variation of MODIS-based CSPM values with an estimated standard error of 6.617–8.457 mg/l. Model validations indicated that the exponential model of TM5 red band got the best result for estimating CSPM from TM5 images when the MODIS-based CSPM values were assumed as ground truths (correlation coefficient between MODIS- and TM5-based CSPM values = 0.96, root mean square error = 4.60 mg/l). We concluded that the TM5-based CSPM retrieval models could be developed with the assistance of MODIS, and the approach proposed in this study will be helpful for other researchers who also want to retrieve CSPM from TM5 image archive but without coincident ground CSPM measurements.  相似文献   

6.
Leaf chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content. The triangular greenness index (TGI) was developed based on the area of a triangle surrounding the spectral features of chlorophyll with points at (670 nm, R670), (550 nm, R550), and (480 nm, R480), where Rλ is the spectral reflectance at wavelengths of 670, 550 and 480, respectively. The equation is TGI = −0.5[(670  480)(R670  R550)  (670  550)(R670  R480)]. In 1999, investigators funded by NASA's Earth Observations Commercialization and Applications Program collaborated on a nitrogen fertilization experiment with irrigated maize in Nebraska. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and Landsat 5 Thematic Mapper (TM) data were acquired along with leaf chlorophyll meter and other data on three dates in July during late vegetative growth and early reproductive growth. TGI was consistently correlated with plot-averaged chlorophyll-meter values at the spectral resolutions of AVIRIS, Landsat TM, and digital cameras. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model indicate an interaction among TGI, leaf area index (LAI) and soil type at low crop LAI, whereas at high LAI and canopy closure, TGI was only affected by leaf chlorophyll content. Therefore, TGI may be the best spectral index to detect crop nitrogen requirements with low-cost digital cameras mounted on low-altitude airborne platforms.  相似文献   

7.
There are increasing societal and plant industry demands for more accurate, objective and near real-time crop production information to meet both economic and food security concerns. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to monitor large agricultural areas at acceptable pixel scale, cost and accuracy. Fitting parametric profiles to growing season vegetation index time series reduces the volume of data and provides simple quantitative parameters that relates to crop phenology (sowing date, flowering). In this study, we modelled various Gaussian profiles to time sequential MODIS enhanced vegetation index (EVI) images over winter crops in Queensland, Australia. Three simple Gaussian models were evaluated in their effectiveness to identify and classify various winter crop types and coverage at both pixel and regional scales across Queensland's main agricultural areas. Equal to or greater than 93% classification accuracies were obtained in determining crop acreage estimates at pixel scale for each of the Gaussian modelled approaches. Significant high to moderate correlations (log-linear transformation) were also obtained for determining total winter crop (R2 = 0.93) areas as well as specific crop acreage for wheat (R2 = 0.86) and barley (R2 = 0.83). Conversely, it was much more difficult to predict chickpea acreage (R2  0.26), mainly due to very large uncertainties in survey data. The quantitative approach utilised here further had additional benefits of characterising crop phenology in terms of length of growing season and providing regression diagnostics of how well the fitted profiles matched the EVI time series. The Gaussian curve models utilised here are novel in application and therefore will enhance the use and adoption of remote sensing technologies in targeted agricultural application. With innate simplicity and accuracies comparable to other more convoluted multi-temporal approaches it is a good candidate in determining total and specific crop acreage estimates in future national and global food security frameworks.  相似文献   

8.
Cyanobacterial blooms in water supply sources in both central Indiana USA (CIN) and South Australia (SA) are a cause of great concerns for toxin production and water quality deterioration. Remote sensing provides an effective approach for quick assessment of cyanobacteria through quantification of phycocyanin (PC) concentration. In total, 363 samples spanning a large variation of optically active constituents (OACs) in CIN and SA waters were collected during 24 field surveys. Concurrently, remote sensing reflectance spectra (Rrs) were measured. A partial least squares–artificial neural network (PLS–ANN) model, artificial neural network (ANN) and three-band model (TBM) were developed or tuned by relating the Rrs with PC concentration. Our results indicate that the PLS–ANN model outperformed the ANN and TBM with both the original spectra and simulated ESA/Sentinel-3/Ocean and Land Color Instrument (OLCI) and EO-1/Hyperion spectra. The PLS–ANN model resulted in a high coefficient of determination (R2) for CIN dataset (R2 = 0.92, R: 0.3–220.7 μg/L) and SA (R2 = 0.98, R: 0.2–13.2 μg/L). In comparison, the TBM model yielded an R2 = 0.77 and 0.94 for the CIN and SA datasets, respectively; while the ANN obtained an intermediate modeling accuracy (CIN: R2 = 0.86; SA: R2 = 0.95). Applying the simulated OLCI and Hyperion aggregated datasets, the PLS–ANN model still achieved good performance (OLCI: R2 = 0.84; Hyperion: R2 = 0.90); the TBM also presented acceptable performance for PC estimations (OLCI: R2 = 0.65, Hyperion: R2 = 0.70). Based on the results, the PLS–ANN is an effective modeling approach for the quantification of PC in productive water supplies based on its effectiveness in solving the non-linearity of PC with other OACs. Furthermore, our investigation indicates that the ratio of inorganic suspended matter (ISM) to PC concentration has close relationship to modeling relative errors (CIN: R2 = 0.81; SA: R2 = 0.92), indicating that ISM concentration exert significant impact on PC estimation accuracy.  相似文献   

9.
The uncertainties involved in remote sensing inversion of CDOM (Colored Dissolved Organic Matter) were analyzed in estuarine and coastal regions of three North American rivers: Mississippi, Hudson, and Neponset. Water optical and biogeochemical properties, including CDOM absorption and above-surface spectra, were collected in very high resolution. CDOM’s concentrations (ag(440), absorption coefficient at 440 nm) were inverted from EO-1 Hyperion images, using a quasi-analytical algorithm for CDOM (QAA-CDOM). Uncertainties are classified to five levels, in which the underwater measurement uncertainty (level 1), image preprocessing uncertainty (level 4) and inverse model uncertainty (level 5) were evaluated. Results indicate that at level 1, in situ CDOM measurement is significant with 0.1 in the unit of QSU and 0.01 in the unit of ag(440) (m−1). At level 4, surface wave is a potential uncertainty source for high-resolution images in estuarine and coastal regions. The remote sensing reflectance of wavy water is about 10 times of the truth. At level 5, the overall uncertainty of QAA-CDOM inversion is 0.006 m−1, with accuracy R2 = 0.77, k = 1.1 and RMSElog = 0.33 m−1. The correlations between uncertainties and other water properties indicate that the large uncertainty in some rivers, such as the Neponset and Atchafalaya, might be caused by high-concentration chlorophyll or sediments. The relationships among the three level uncertainties show that the level 1 uncertainty generally does not propagate into level 4 and 5, but the large uncertainty at level 4 usually introduce large uncertainty at level 5.  相似文献   

10.
Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.  相似文献   

11.
In this paper, we focused on the retrieval of the LAI in an alpine wetland located in western part of China in late August and early July 2011. A two-layer canopy reflectance model (ACRM) was used to establish the relationships between the LAI and the reflectance of near-infrared (NIR) and red (RED) wavebands. The reflectance data were derived from Landsat TM L1T product and the Terra and Aqua MODIS 16-day and 8-day composite reflectance products (MOD/MYD09) at 250 m resolution. Due to the lack of the information about some major input parameters for ACRM, which are sensitive to model outputs in the reflectance of NIR and RED wavebands, the inverse problem was ill-posed. To overcome this problem, a method of increasing the sensitivity of the LAI while reducing the influence of other model free parameters based on the study of free parameters’ sensitivity to the ACRM outputs and the region’s features was studied. The area of interest was divided into two parts using the approximately statistic normalized difference vegetation index (NDVI) value around 0.5. One part was sparse vegetation (0.1 < NDVI < 0.5), which is more sensitive to soil background effects and less sensitive to the canopy biophysical and biochemical variables. The other part was dense vegetation (0.5  NDVI < 1.0), which is less sensitive to soil background effects and more sensitive to plant canopies and leaf parameters. Then, the relationships of ρnir–LAI and ρred–LAI were established using a look-up table algorithm for the two parts. Furthermore, a regularization technique for fast pixel-wise retrieval was introduced to reduce the elements of LUT sets while maintaining a relatively high accuracy. The results were very promising compared to the field measured LAI values that the correlation (R2) of the measured LAI values and retrieved LAI values reached 0.95, and the root-mean-square deviation (RMSD) was 0.33 for late August, 2011, while the R2 reached 0.82 and RMSD was 0.25 for early July 2011.  相似文献   

12.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

13.
Remote sensing technologies are an ideal platform to examine the extent and impact of fire on the landscape. In this study we assess that capacity of the RapidEye constellation and Landsat (Thematic Mapper and Operational Land Imager to map fine-scale burn attributes for a small, low severity prescribed fire in a dry Western Canadian forest. Estimates of burn severity from field data were collated into a simple burn index and correlated with a selected suite of common spectral vegetation indices. Burn severity classes were then derived to map fire impacts and estimate consumed woody surface fuels (diameter ≥2.6 cm). All correlations between the simple burn index and vegetation indices produced significant results (p < 0.01), but varied substantially in their overall accuracy. Although the Landsat Soil Adjusted Vegetation Index provided the best regression fit (R2 = 0.56), results suggested that RapidEye provided much more spatially detailed estimates of tree damage (Soil Adjusted Vegetation Index, R2 = 0.51). Consumption estimates of woody surface fuels ranged from 3.38 ± 1.03 Mg ha−1 to 11.73 ± 1.84 Mg ha−1, across four derived severity classes with uncertainties likely a result of changing foliage moisture between the before and after fire images. While not containing spectral information in the short wave infrared, the spatial variability provided by the RapidEye imagery has potential for mapping and monitoring fine scale forest attributes, as well as the potential to resolve fire damage at the individual tree level.  相似文献   

14.
The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390–14.0 μm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band combinations) and a partial least square regression (PLSR) were used to assess the strength of each spectral region. The coefficient of determination (R2) and root mean square error (RMSE) were used to report the prediction accuracy of spectral indices and PLSR models. In the visible-near infrared and shortwave infrared (VNIR–SWIR), the most accurate spectral index yielded R2 of 0.89 and RMSE of 7.60%, whereas in the mid infrared (MIR) the highest R2 was 0.93 and RMSE of 5.97%. Leaf water content was poorly predicted using two-band indices developed from the thermal infrared (R2 = 0.33). The most accurate PLSR model resulted from MIR reflectance spectra (R2 = 0.96, RMSE = 4.74% and RMSE cross validation RMSECV = 6.17%) followed by VNIR–SWIR reflectance spectra (R2 = 0.91, RMSE = 6.90% and RMSECV = 7.32%). Using thermal infrared (TIR) spectra, the PLSR model yielded a moderate retrieval accuracy (R2 = 0.67, RMSE = 13.27% and RMSECV = 16.39%). This study demonstrated that the mid infrared (MIR) and shortwave infrared (SWIR) domains were the most sensitive spectral region for the retrieval of leaf water content.  相似文献   

15.
The development of cost-effective, reliable and easy to implement crop condition monitoring methods is urgently required for perennial tree crops such as coffee (Coffea arabica), as they are grown over large areas and represent long term and higher levels of investment. These monitoring methods are useful in identifying farm areas that experience poor crop growth, pest infestation, diseases outbreaks and/or to monitor response to management interventions. This study compares field level coffee mean NDVI and LSWI anomalies and age-adjusted coffee mean NDVI and LSWI anomalies in identifying and mapping incongruous patches across perennial coffee plantations. To achieve this objective, we first derived deviation of coffee pixels from the global coffee mean NDVI and LSWI values of nine sequential Landsat 8 OLI image scenes. We then evaluated the influence of coffee age class (young, mature and old) on Landsat-scale NDVI and LSWI values using a one-way ANOVA and since results showed significant differences, we adjusted NDVI and LSWI anomalies for age-class. We then used the cumulative inverse distribution function (α  0.05) to identify fields and within field areas with excessive deviation of NDVI and LSWI from the global and the age-expected mean for each of the Landsat 8 OLI scene dates spanning three seasons. Results from accuracy assessment indicated that it was possible to separate incongruous and healthy patches using these anomalies and that using NDVI performed better than using LSWI for both global and age-adjusted mean anomalies. Using the age-adjusted anomalies performed better in separating incongruous and healthy patches than using the global mean for both NDVI (Overall accuracy = 80.9% and 68.1% respectively) and for LSWI (Overall accuracy = 68.1% and 48.9% respectively). When applied to other Landsat 8 OLI scenes, the results showed that the proportions of coffee fields that were modelled incongruent decreased with time for the young age category and while it increased for the mature and old age classes with time. We concluded that the method could be useful for the identification of anomalous patches using Landsat scale time series data to monitor large coffee plantations and provide an indication of areas requiring particular field attention.  相似文献   

16.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.  相似文献   

17.
Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content (R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VIgreen, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content (R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content (R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.  相似文献   

18.
Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350–2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg−1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg−1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg−1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and 2290 nm, leaf spectral bands near 700, 890 and 900 nm in PLSR models were important wavelengths for soil arsenic prediction. Moreover, soil arsenic showed significantly positive correlations with soil organic matter (r = 0.62, p < 0.01) and leaf arsenic (r = 0.77, p < 0.01), and a significantly negative correlation with leaf chlorophyll (r = −0.67, p < 0.01). The results showed that the prediction of arsenic contents using soil and leaf spectra may be based on their relationships with soil organic matter and leaf chlorophyll contents, respectively. Although RPD of 1.47 was below the recommended RPD of >2 for soil analysis, arsenic prediction in agricultural soils can be improved by combining the leaf and soil spectra.  相似文献   

19.
20.
Heavy metals contaminated soils and water will become a major environmental issue in the mining areas. This paper intends to use field hyper-spectra to estimate the heavy metals in the soil and water in Wan-sheng mining area in Chongqing. With analyzing the spectra of soil and water, the spectral features deriving from the spectral of the soils and water can be found to build the models between these features and the contents of Al, Cu and Cr in the soil and water by using the Stepwise Multiple Linear Regression (SMLR). The spectral features of Al are: 480 nm, 500 nm, 565 nm, 610 nm, 680 nm, 750 nm, 1000 nm, 1430 nm, 1755 nm, 1887 nm, 1920 nm, 1950 nm, 2210 nm, 2260 nm; The spectral features of Cu are: 480 nm, 500 nm, 610 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1920 nm, 2150 nm, 2260 nm; And the spectral features of Cr are: 480 nm, 500 nm, 610 nm, 715 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1755 nm, 1920 nm, 1950 nm. With these features, the best models to estimate the heavy metals in the study area were built according to the maximal R2. The R2 of the models of estimating Al, Cu and Cr in the soil and water are 0.813, 0.638, 0.604 and 0.742, 0.584, 0.513 respectively. And the gradient maps of these three types of heavy metals’ concentrations can be created by using the Inverse distance weighted (IDW).The gradient maps indicate that the heavy metals in the soil have similar patterns, but in the North-west of the streams in the study area, the contents are of great differences. These results show that it is feasible to predict contaminated heavy metals in the soils and streams due to mining activities by using the rapid and cost-effective field spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号