首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A simplified procedure for the estimation of cyclic shear stresses on foundation soil layers due to interactions of seismic excitation, foundation mat and overlying structural system, incorporating both kinematic and inertial aspects was described earlier in Cetin et al. [1], [2]. This simplified procedure is now used, along with laboratory-based cyclic shear and volumetric strain relationships for the assessment of cyclically induced settlement and tilting potential of mat foundations. The proposed methodology is calibrated by well-documented seismic foundation performance case histories of 3–6 story, relatively rigid residential structures with no basements. Immediately after 1999 Kocaeli and Duzce, Turkey earthquakes, foundation settlements of these case history buildings were carefully mapped relative to available elevation benchmarks, such as relatively rigid concrete pavements, drainage pipes and ditches, and entrance stairs, located in the immediate vicinity of the buildings. Tilt angles of these buildings were also mapped in orthogonal multi-directions. Relative settlement and tilt angle values vary in the range of 0–60 cm and 0–5.5 rad, respectively. As part of subsurface characterization studies, SPT and seismic CPTU were performed. For the retrieved disturbed and undisturbed samples, an intensive laboratory testing program including sieve analysis, Atterberg Limit, hydrometer, oedometer, static and cyclic triaxial and cyclic simple shear tests was executed. The foundation soil profiles generally consist of silty soils, sand–silt mixtures and silt–clay mixtures of SPT-N values varying in the range of 2–5 blows/30 cm in the upper 5 m and gradually increases up to a maximum value of 25 blows/30 cm beyond depths of 5–8 m. As part of the proposed framework, displacement potential indices, defined as the product of induced-cyclic strains and the thickness of soil sub-layers, were estimated, the sum of which produce settlement and tilting potentials. Then, these settlement and tilting potentials were calibrated against recorded settlement and tilt values through a statistically based calibration scheme. The proposed simplified procedure is shown to reliably and precisely capture both deviatoric and volumetric components of post-cyclic settlements, as well as tilting responses of mat foundations.  相似文献   

2.
Base isolation is an effective way to reduce earthquake energy transfer from ground to structure, but existing seismic isolation systems are not very suitable for rural buildings for some reasons. A new steel–asphalt composite layer for the seismic base isolation of housing units is present in this paper. Its dynamic characteristics and isolation effect are studied by shake table tests of two full-scale specimens. Different earthquake waves with different peak ground accelerations (PGA, from 0.1 g to 0.4 g) are input. Test results show that the isolation layer could efficiently reduce the input acceleration. Moreover, as the PGA increase, the isolation layer shows good function of the displacement limit.  相似文献   

3.
The effect of soil inhomogeneity and material nonlinearity on kinematic soil–pile interaction and ensuing bending under the passage of vertically propagating seismic shear waves in layered soil, is investigated by means of 1-g shaking table tests and nonlinear numerical simulations. To this end, a suite of scale model tests on a group of five piles embedded in two-layers of sand in a laminar container at the shaking table facility in BLADE Laboratory at University of Bristol, are reported. Results from white noise and sine dwell tests were obtained and interpreted by means of one-dimensional lumped parameter models, suitable for inhomogeneous soil, encompassing material nonlinearity. A frequency range from 0.1 Hz to 100 Hz and 5 Hz to 35 Hz for white noise and sine dwell tests, respectively, and an input acceleration range from 0.015 g to 0.1 g, were employed. The paper elucidates that soil nonlinearity and inhomogeneity strongly affect both site response and kinematic pile bending, so that accurate nonlinear analyses are often necessary to predict the dynamic response of pile foundations.  相似文献   

4.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

5.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

6.
《Journal of Geodynamics》2007,43(4-5):95-114
A three-dimensional model for the central Fennoscandian Shield was constructed for analysing the thermal, the rheological and the structural conditions in the lithosphere. The mesh covers a rectangular area in the southern Finland with horizontal dimensions of 500 km × 400 km and a depth extent of 100 km. Structural boundaries are derived from the several deep seismic soundings carried out in the area. Constructed model is first used in the calculation of the thermal and the rheological models and secondly in analysing the stress and the deformational conditions with the obtained rheology. Thermal and structural models are solved with the finite element method. The calculated surface HFD is between 40 and 48 mW m−2 in the Proterozoic southern part and below 40 mW m−2 in the older and northern Archaean part of the model. The calculated rheological strength shows a layered structure with two individual rheologically weak layers in the crust and strong layer in the upper part of the lower crust. The minimum brittle–ductile transition (BDT) depth is around 10 km in the southern part of the model while in the north and north-eastern parts the BDT depth is around 45–50 km. Comparison with the focal depth data shows that as most of the earthquakes occur no deeper than the depth of 10 km are they located in the brittle regime. Resulting stress conditions and possible regions of deformation after the model is subjected to pressure of 50 MPa reveals that the stress field is quite uniformly distributed in different crustal layers and that the elastic parameters control more the state of the stress than the applied rheological structure. In the upper crust, the stress intensity has values between 42 and 45 MPa whereas in the middle crust the values are around 50 MPa. Comparison of the 3-D model with earlier 2-D models shows that some differences in the results are to be expected.  相似文献   

7.
A hybrid foundation for offshore wind turbines (OWT) is studied, combining a monopile of diameter d and length L with a lightweight circular footing of diameter D. The footing is composed of steel plates and stiffeners forming compartments, backfilled to increase the vertical load. A special pile–footing connection is outlined, allowing transfer of lateral loads and moments, but not of vertical loads. The efficiency of the hybrid foundation is explored through 3D finite element modelling. Hybrid foundations of L=15 m are comparatively assessed to an L=30 m reference monopile. A detailed comparison is performed focusing on a 3.5 MW OWT. While the moment capacity of the monopile is larger, the hybrid foundation exhibits stiffer response, outperforming the monopile in the operational loading range. Under cyclic loading, the hybrid foundation experiences less stiffness degradation and rotation accumulation. Besides installation, the cost savings depend on the design of the footing and buckling can be crucial. The rubble fill is shown to provide lateral restraint to the stiffeners, being beneficial for buckling prevention. Although seismic shaking is not critical in terms of capacity, it may lead to substantial accumulation of rotation and settlement. Combined with cyclic environmental loading, the latter may challenge the serviceability of the OWT, potentially leading to a reduction of its service life. To derive insights on the effect of seismic loading, two scenarios are investigated: (a) seismic loading; and (b) combined environmental and seismic loading. In the first case, even a D=15 m hybrid foundation may outperform the reference monopile. This is not the case for combined environmental and seismic loading, where a D=20 m hybrid system would be required to outperform the reference monopile.  相似文献   

8.
In western India during the Bhuj earthquake (Mw 7.6) on January 26, 2001, the Anjar City at ~30 km southwest of Bhuj experienced three types of damage scenario: severely damaged, less damaged and non-damaged. Similar damage patterns were also observed for the 1819 (Mw 7.8) and the 1956 (Mw 6.0) earthquakes. Microtremor array measurements were conducted in and around the Anjar city to examine the strength of soil structures and damage pattern. Significant differences are observed in frequencies and amplitudes in horizontal-to-vertical spectral ratio (HVSR) using microtremor measurements. The severely- damaged site shows two peak amplitudes: 2.8 at 1.2 Hz; and 4.0 at 8.0 Hz. The less-damaged site also shows two amplitudes: 2.5 and 2.1 at 1.4 Hz; and 2.0 Hz, respectively. The non-damaged site, on the other hand, shows that the HVSR curves become almost flatter. Similar results for three types of damage scenario based on analyses of earthquake records are also observed for the study area. The microtremor array measurements has revealed shear wave velocity Vs≥400 m/s at 18 m depth in the non-damaged, at 40 m in the less-damaged and at 60 m depth in the severely-damaged sites. The site amplitudes and the Vs values show a good correlation with the soil characteristics and damage pattern, suggesting that strength of soil layers at varying depths is a dictating factor for the estimate of the earthquake risk evaluation of the area under study.  相似文献   

9.
We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28–32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15–26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo–Triassic (P–T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P–T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.  相似文献   

10.
Seismic reflection data were acquired across volcanic hosted massive sulfides (VHMS) of Vihanti in order to improve the understanding of the regional geological setting. Commercially processed seismic data from Vihanti are of good quality, but reprocessing can be used to extract additional information about geological structures. Especially, careful velocity analysis influences the quality of seismic images. Differentiating reflections caused by fractures from those caused by lithological contacts is very important for exploration and geological modeling. Reflections from fracture zones known from drilling stack with lower velocity (~ 5100 m/s) compared to typical stacking velocities of the Vihanti area (> 5500 m/s). The reprocessing also indicated that fracture zones are better imaged with low frequencies due to the better overall continuity of the fault zones at scales of hundreds of meters rather than at shorter seismic wavelengths.In full stacks, long offset data can mask structure close to the surface. More detailed seismic images of the shallow subsurface emerged by preferentially stacking short offset data wherever acquisition and processing lines lay close together and were nearly straight. Long offset data remains valuable for imaging deeper structures as well as dipping reflectors. Cross-dip-analysis revealed a bright diffractor located near the base of the Vihanti volcanic basin at 1.5 km depth. The seismic data allow a geological interpretation in which the Vihanti structure has developed through significant thrust faulting and displacement of the lithological contacts. Gentle folds that were formed prior to faulting are visible as undulating reflectivity in seismic sections. The reprocessed seismic section indicates a potential deep extension of the ore-hosting altered volcanic and calc-silicate rocks previously unexplored.  相似文献   

11.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

12.
An experimental development of a computer controlled photoelectric ocular system applied for the LaCoste and Romberg G949 gravimeter made the continuous observation of time variation of gravity possible. The system was operated for half a year in the Sopronbánfalva Geodynamical Observatory to test its capabilities. The primary aim of this development was to provide an alternative and self-manageable solution instead of the standard electronic (Capacitive Position Indicator) reading of this type of gravimeter and use it for the monitoring of Earth tide. It, however, turned out that this system is sensitive enough to observe the effect of variable seismic noise (microseisms) due to the changes of ocean weather in the North Atlantic and North Sea regions at microGal level (1 μGal = 10−8 m/s2). Up to now not much attention was paid to its influence on the quality and accuracy of gravity observations because of the large distance (>1000 km) between the observation place (generally the Carpathian–Pannonian basin) and the locations (centres of storm zones of the northern hydrosphere) of triggering events. Based on an elementary harmonic surface deformation model the noise level of gravity observations was compared to the spectral characteristics of seismic time series recorded at the same time in the observatory. Although the sampling rate of gravity records was 120 s the daily variation of gravity noise level showed significant correlation with the variation of spectral amplitude distribution of the analysed high pass filtered (cut-off frequency = 0.005 Hz) seismograms up to 10 Hz. Also available daily maps of ocean weather parameters were used to support both the correlation analysis and the parameterization of the triggering events of microseisms for further statistical investigations. These maps, which were processed by standard image processing algorithms, provide numerical data about geometrical (distance and azimuth of the storm centres relative to the observation point) and physical (mass of swelling water) quantities. The information can be applied for characterizing the state of ocean weather at a given day which may help the prediction of its influence on gravity measurements in the future. Probably it is the first attempt to analyse quantitatively the effect of ocean weather on gravity observations in this specific area of the Carpathian–Pannonian region.  相似文献   

13.
We have measured 36Cl in three rock surfaces of the Yenicekale building complex in Hattusha (Bo?azköy, Turkey). Hattusha was the capital of Hittite Empire which lasted from about 1650/1600 to 1200 BC. At Yenicekale, Hittite masons flattened the summit of an outcropping limestone knoll to form an artificial platform as the foundation for a building. Next they built a circuit wall along the lateral precipices of the flattened bedrock platform. We took one sample from the limestone bedrock platform and two samples from limestone building blocks of the circuit wall for cosmogenic 36Cl analysis. Calculated exposure ages are 20 ± 1 ka for the sample from the bedrock platform and 24 ± 1 ka and 52 ± 2 ka for the circuit wall blocks. These exposure ages are significantly older than the age expected based on the estimated time of construction between 3.2 ka and 3.7 ka. We conclude that the sampled surfaces contain significant inherited cosmogenic 36Cl. We cannot directly determine exposure ages for the building complex based on these three samples. On the other hand we may use the measured concentrations to determine how much of the rock was removed from the platform during flattening. To this end we modeled the variation of 36Cl production with depth at Yenicekale using the results from the bedrock sample. We conclude that the Hittite masons removed only around 3 m from top of the limestone block. This means that the volume of rock removed from the bedrock platform is significantly less than the volume in the circuit wall atop the platform. They did not gain enough rock from this flattening to make the building. In agreement with this, the first results of our detailed microfacies analysis indicate that many of the building blocks are not of the same facies as the underlying limestone and must have been quarried elsewhere. Although we were not able to exposure date the Yenicekale complex due to the presence of inherited 36Cl, our data suggest that Hittite masons excavated (most of) the building stones not at Yenicekale, but in quarries outside of Hattusha and then transported them to the construction site. These quarries have not yet been identified.  相似文献   

14.
The Oligocene to present evolution of the North Patagonian Andes is analyzed linking geological and geophysical data in order to decipher the deformational processes that acted through time and relate them to basin formation processes. Seismic reflection profiles reveal the shallow structure of the retroarc area where contractional structures, associated with Oligocene to early Miocene inverted extensional depocenters, are partially onlapped by early to late Miocene synorogenic deposits. From the construction of five structural cross sections along the retroarc area between 40° and 43°30′ S, constrained by surface, gravity and seismic data, a shortening gradient is observed along Andean strike. The highest shortening of 18.7 km (15.34%) is determined near 41°30′ S coincidentally with maximum mean topographic values on the eastern Andean slope, where basement blocks were uplifted in the orogenic front area, and the deepest and broadest synorogenic depocenters were formed towards the foreland. Additionally, eastward shifting of Miocene calc-alkaline rocks occurred at these latitudes, which is interpreted as indicative of a change in the subduction parameters at this time. Deep crustal retroarc structure is evaluated through inversion of gravity models that made possible to infer Moho attenuated zones. These coincide with the occurrence of younger than 5 Ma within-plate volcanics as well as with crustal thermal anomalies suggested by shallowing of the Curie isotherm calculated from magnetic data. Younger volcanism and thermal anomalies are explained by slab steepening since early Pliocene, after a mild-shallow subduction setting in the middle to late Miocene, age of the main compressive event.  相似文献   

15.
This paper presents the dynamic soil–structure analysis of the main telescope T250 of the Observatorio Astrofísico de Javalambre (OAJ, Javalambre Astrophysical Observatory) on the Pico del Buitre. Vibration control has been of prime concern in the design, since astrophysical observations may be hindered by mechanical vibration of optical equipment due to wind loading. The telescope manufacturer therefore has imposed a minimal natural frequency of 10 Hz for the supporting telescope pier. Dynamic soil–structure interaction may significantly influence the lowest natural frequency of a massive construction as a telescope pier. The structure clamped at its base has a resonance frequency of 14.3 Hz. A coupled finite element–boundary element (FE–BE) model of the telescope pier that accounts for the dynamic interaction of the piled foundation and the soil predicts a resonance frequency of 11.2 Hz, demonstrating the significant effect of dynamic soil–structure interaction. It is further investigated to what extent the coupled FE–BE model can be simplified in order to reduce computation time. The assumption of a rigid pile cap allows us to account for dynamic soil–structure interaction in a simplified way. A coupled FE–BE analysis with a rigid pile cap predicts a resonance frequency of 11.7 Hz, demonstrating a minor effect of the pile cap flexibility on the resonance frequency of the telescope pier. The use of an analytical model for the pile group results in an overestimation of the dynamic soil stiffness. This error is due to the large difference between the actual geometry and the square pile cap model for which the parameters have been tuned.  相似文献   

16.
We report on a two-year seismic deployment in the Cape Verde Islands, one goal of which was to study the upper mantle to determine its structure under a hot spot that is stationary in the hot spot reference frame. We find from analysis of P-to-S receiver functions estimated from broadband seismic recordings that, within uncertainty, the time separation between the 410 and 660 km discontinuities is normal compared to radial earth models. Thus, to exist, even stationary hot spots do not require vertical thermal anomalies from deep melting sources anchored in the lower mantle or at the core–mantle boundary or their anomalies are narrower than ~ 250 km in the upper mantle.  相似文献   

17.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

18.
At longer periods, scattered ScS waves sometimes dominate over coda waves at large lapse times. Examining recordings of seismic envelopes at 9 IRIS seismic stations of regional earthquakes with focal depths deeper than 150 km in periods from 1 to 20 s for a wide lapse time range up to 2000 s, we found significant frequency dependence. The coda decay gradient at short periods is steeper than that at longer periods; however, the change of coda gradient associated with the ScS arrival becomes distinct as the period becomes longer. In particular, a clear offset of coda amplitude appears in central Asia for 10 and 15 s period bands. The multiple isotropic scattering process of S-waves in the heterogeneous mantle can be simply simulated by using the Monte Carlo simulation method based on the radiative transfer theory in scattering media. Assuming a two-plane-layer attenuation structure and smoothed velocity model of the PREM, we estimated the average total scattering coefficients of S-waves such as 7.52 × 10 4∼1.32 × 10 3 km 1 and 2.08 × 10 4∼6.23 × 10 4 km 1 at 4 s, and 4.51 × 10 4∼7.37 × 10 4 km 1 and 2.80 × 10 5∼2.71 × 10 4 km 1 at 10 s, for the lithosphere and the upper mantle and for the lower mantle, respectively. Our results indicate that scattering occurs mostly in the lithosphere and the upper mantle and support that medium heterogeneity spreads over the whole mantle though its scattering power is small. Strong scattering occurs beneath central Asia and Papua New Guinea, whereas the scattering beneath Italy and regions of east Russia is much weaker. The numerical calculation enables us to confirm that much stronger scattering than intrinsic attenuation causes the offset behavior with coda decay gradient change after the ScS arrival for 4 and 10 s period bands in some regions.  相似文献   

19.
We have determined the post-perovskite phase transition boundary in MgSiO3 in a wide temperature range from 1640 to 4380 K at 119–171 GPa on the basis of synchrotron X-ray diffraction measurements in-situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). The results show a considerably high positive Clapeyron slope of + 13.3 ± 1.0 MPa/K and a transition temperature of about 3520 ± 70 K at the core–mantle boundary (CMB) pressure. The thermal structure in D″ layer can be tightly constrained from precisely determined post-perovskite phase transition boundary and the depths of paired seismic discontinuities. These suggest that temperature at the CMB may be around 3700 K, somewhat lower than previously thought. A minimum bound on the global heat flow from the core is estimated to be 6.6 ± 0.5 TW.  相似文献   

20.
Experimental measurements of fracture-induced seismic waves velocity variations at frequencies ~ 1 kHz, ~ 40 kHz and ~ 1 MHz were performed directly in the field at the rocky outcrop and in the laboratory on specific rock samples collected from the outcrops. The peridotite–lherzolite outcrop appeared macroscopically uniform and contained three systems of visible parallel sub-vertical fractures. This rock has substantial bulk density and higher than average value of seismic wave velocity. The presence of fracture systems gives rise to its velocity anisotropy. The seismic waves passing through the rock fractures are subject to velocity dispersion and frequency dependent attenuation. Our data, obtained from field and laboratory measurements, were compared with theoretical model predictions. In this model we successfully used displacement discontinuity approach. For the velocity dispersion evaluation we used multi-frequency measurements. The a priori observation of orientations and densities of fracture sets allowed evaluation of their stiffness. Our approach revealed that the first arrivals of seismic waves can be used for evaluation of P-wave group velocities, the specific case, in which we expect anomalous velocity dispersion. Our observations contribute to the issue of up-scaling of well-log derived velocities in fractured rock to the scale of standard seismic exploration frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号