首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarity solutions, for one-dimensional unsteady flow of a perfect gas behind a spherical shock wave produced on account of a sudden explosion or driven out by an expanding piston including the effects of radiative cooling, are investigated. The shock ahead of the point of explosion or piston is propagating into a transparent medium at rest with non-uniform density. The total energy of the wave is assumed to be time dependent obeying a power law.  相似文献   

2.
Similarity solutions, for one-dimensional unsteady of a perfect gas behind a spherical shock wave produced on account of a sudden explosion or driven out by an expanding piston including the effects of radiative cooling and an idealised azimuthal magnetic field, are studied. The shock is assumed to be strong and it is propagating into a transparent medium at rest with varying density. The magnetic field is proportional tor ?1. The total energy of the wave is time dependent obeying a power law.  相似文献   

3.
It has recently been shown that radiative cooling of vibrationally excited NO at 5.3μm could result in a significant loss of heat from the lower thermosphere. In contrast to this effect, recent rocket measurements of atomic oxygen fine structure radiation at 63 μm suggests that radiation entrapment may greatly reduce the effectiveness of this process in cooling the lower thermosphere. In this paper we examine the effects of these processes on the u.v. heating efficiency ?. We point out that in the past the definition used for the heating efficiency runs counter to its logical application, and that strictly speaking, the above processes should be included as cooling processes in the energy equations. However, in order to compare out findings with past work we include the 0 and NO radiative cooling in the calculation of an effective heating efficiency, ?. We find that ? can vary from 45 to 60% depending on how the two radiative cooling mechanisms are included in the calculation. In addition it is found that the shape of the altitude profile of the heating efficiency varies significantly with season, while the peak value remains relatively invariant.  相似文献   

4.
Recently, the existence of geometrically thick dust structures in active galactic nuclei (AGN) has been directly proven with the help of interferometric methods in the mid-infrared. The observations are consistent with a two-component model made up of a geometrically thin and warm central disc, surrounded by a colder, fluffy torus component. Within the framework of an exploratory study, we investigate one possible physical mechanism, which could produce such a structure, namely the effect of stellar feedback from a young nuclear star cluster on the interstellar medium in centres of AGN. The model is realized by numerical simulations with the help of the hydrodynamics code tramp . We follow the evolution of the interstellar medium by taking discrete mass-loss and energy ejection due to stellar processes, as well as optically thin radiative cooling into account. In a post-processing step, we calculate observable quantities like spectral energy distributions (SEDs) and surface brightness distributions with the help of the radiative transfer code mc3d . The interplay between injection of mass, supernova explosions and radiative cooling leads to a two-component structure made up of a cold geometrically thin, but optically thick and very turbulent disc residing in the vicinity of the angular momentum barrier, surrounded by a filamentary structure. The latter consists of cold long radial filaments flowing towards the disc and a hot tenuous medium in between, which shows both inwards and outwards directed motions. With the help of this modelling, we are able to reproduce the range of observed neutral hydrogen column densities of a sample of Seyfert galaxies as well as the relation between them and the strength of the silicate 10 μm spectral feature. Despite being quite crude, our mean Seyfert galaxy model is even able to describe the SEDs of two intermediate type Seyfert galaxies observed with the Spitzer Space Telescope .  相似文献   

5.
6.
A self-similar solution to Sedov’s problem of a strong explosion in a homogeneous medium is generalized to the case of relativistic-particle generation in a supernova remnant; the particles are accelerated by Fermi’s mechanism at the shock front and in the perturbed post-shock region. Self-similarity takes place if the thickness of the prefront is small compared to its radius and if the pressure ratio of the relativistic and nonrelativistic components at the shock front is kept constant. In the presence of relativistic particles, the time dependence of the shock-front radius remains the same as that in their absence, but the plasma parameters in the inner perturbed region change appreciably. The shell of the matter raked up by the explosion is denser and thinner than that in the nonrelativistic case, the relativistic-particle pressure in the central region remains finite, and the nonrelativistic-gas pressure at the explosion center approaches zero. The influence of relativistic particles on the transition to the radiative phase of expansion of the supernova remnant and on its dynamics is studied. It is shown that relativistic particles can decrease several-fold the remnant radius at which the transition to the radiative phase occurs.  相似文献   

7.
Recent X-ray and optical observations of the Perseus cluster indicate that a combination of weak shocks at small radii  (≳20  kpc)  and viscous and conductive dissipation of sound waves at larger radii is responsible for heating the intracluster medium and can balance radiative cooling of cluster cores. We discuss this mechanism more generally and show how the specific heating and cooling rates vary with temperature and radius. It appears that this heating mechanism is most effective above  107  K  , which allows for radiative cooling to proceed within normal galaxy formation but stifles the growth of very massive galaxies. The scaling of the wavelength of sound waves with cluster temperature and feedback in the system are investigated.  相似文献   

8.
We investigate the gravitational interaction between a planet and an optically thin protoplanetary disc, performing local three-dimensional hydrodynamical simulations. In the present study, we take account of radiative energy transfer in optically thin discs. Before the stage of planetary accretion, dust opacity is expected to decrease significantly because of grain growth and planetesimal formation. Thus, it would be reasonable to consider optically thin discs in the disc–planet interaction. Furthermore, we focus on small planets that can neither capture disc gas nor open a disc gap. The one-sided torque exerted on a planet by an optically thin disc is examined for various values of the disc optical thickness (<1). In optically thin discs, the temperature behind the density waves is lower than the unperturbed value because of radiative cooling. Heating due to shock dissipation is less effective than radiative cooling. Because of radiative cooling, the density distribution around the planet is not axisymmetric, which exerts an additional torque on the planet. The torque enhancement becomes maximum when the cooling time is comparable with the Keplerian period. The enhancement is significant for low-mass planets. For planets with  3 M  , the additional one-sided torque can be 40 per cent of the torque in the isothermal case. The radiative cooling is expected to change the differential torque and the migration speed of planets, too.  相似文献   

9.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   

10.
A significant cooling of the upper stratosphere at high latitudes following the major solar proton event of August 1972 is reported. The observed cooling is consistent with a decrease in upper stratospheric ozone after the same proton event that has been reported by Heath,et al. (1977). It is also in agreement with the cooling predicted by tentative model calculations of radiative equilibrium temperature changes following the deozonizing effect of nitric oxides produced at high latitudes by solar protons.  相似文献   

11.
Conclusions In this paper I have set forth in detail the theory of thermal waves in inhomogeneous media; it has, I believe, independent theoretical interest. I wish also to point out the fact that the mechanism of separation of an envelope in a nova explosion has hitherto remained obscure, since it strongly depends on the nature of the energy source of the explosion. Thus, if this energy is liberated by thermonuclear reactions, it is more probable that the time of development of the phenomenon reaches hundreds or even thousands of seconds. In such a case, the ejection of an envelope of the star is the result of the total effect of an infinite series of acoustic and weak shock waves that, added together, give a powerful pressure wave [6]. But if the energy of the explosion is gravitational in nature, its liberation may be virtually instantaneous, and the mechanism that transports the energy to infinity could be either a shock wave or a thermal wave. Moreover, if the explosion is due to a rearrangement of only the outer shell of the star, a thermal wave is more probable. And although the velocities of the thermal waves themselves are high, the rate of expansion of the matter of the shell will be appreciably less, since the time (of the order of a few seconds) is too short for interaction between radiation and matter. This distribution of velocities of the matter behind the thermal front can be obtained by a numerical solution of the equations of gas dynamics with allowance for the effects of radiative thermal conductivity; I hope to find such a solution in the future.Astronomical Observatory, L'vov University. Translated from Astrofizika, Vol. 9, No. 2, pp. 307–317, April–June, 1973.  相似文献   

12.
We numerically simulate the evolution of the plane two-dimensional deformations of a contact discontinuity that is impulsively accelerated by a shock wave. We take into account the effects of radiative cooling and perturbation scale lengths on the dynamics and shape of the forming density inhomogeneities. For moderately intense shocks in a stellar wind and for strong shocks from a supernova, we show that the radiative cooling processes do not affect significantly the growth rate of the initial perturbations and the total mass of the forming condensations. However, the density of the matter compressed by the transmitted shock wave increases dramatically. At the same time, the contribution from long-wavelength perturbations to the deformation of the contact surface decreases significantly. In the case of shock propagation from a supernova, the initial conditions have been found to be a factor that can affect the morphology of the shocked interstellar medium.  相似文献   

13.
The dynamical evolution of a relativistic explosion in a homogeneous medium is studied by means of a time-dependent, hydrodynamic code. When the expanding velocity of the shock front reduces to the sound velocity in the relativistic fluid, the reverse shock wave propagating inward through the expanding material is generated. The radius of the turning point of the reverse shock wave is proportional to the explosion energy and hardly depends on the mass of the explosion products. In the case of the non-relativistic explosion, the reverse shock wave is generated just after the free expansion stage. The radius of the turning point of the reverse shock wave is proportional to the mass of the explosion products and little depends on the explosion energy. In both cases of the non-relativistic and relativistic explosion, the reverse shock wave is strong in a spherical explosion and weak in a cylindrical one. The plane symmetric explosion does not generate the reverse shock wave.  相似文献   

14.
We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ~100 km s?1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.  相似文献   

15.
The contraction of matter in the primordial medium, to form the first gravitationally bound structures, was mediated by radiative cooling of the gas by H2 and HD. We have computed the initial phases of free-fall collapse, incorporating the results of quantum mechanical calculations of rate coefficients for collisional excitation of H2 and HD by the principal perturbers, H, He, H2 and H+. The structure of shock waves produced when the collapse speed exceeds the local sound speed is determined. In the post-shock gas, radiative cooling by H2 exceeds that by HD, but by a factor of only 4. The intensities of the strongest emission lines of H2– rotational transitions within the vibrational ground state – are calculated. Even with coarse spectral and angular resolution, these transitions might be observable as inhomogeneities in the cosmic background radiation.  相似文献   

16.
We discuss the afterglow emission from a relativistic jet that is initially in the radiative regime, in which the accelerated electrons are fast-cooling. We note that such a 'semiradiative' jet decelerates faster than an adiabatic jet does. We also take into account the effect of strong inverse-Compton scattering on the cooling frequency in the synchrotron component and therefore on the light-curve decay index. We find that there are two kinds of light-curve break for the jet effect. The first is an 'adiabatic break', if the electrons become slow-cooling before the jet enters a spreading phase, and the second is a 'radiative break', which appears in the contrary case. We then show how a relativistic jet evolves dynamically and derive the overall temporal synchrotron emission in both cases, focusing on the change in the light-curve decay index around the break time. Finally, in view of our results, we rule out two cases for relativistic jets which do not account for the observed light-curve breaks in a few afterglows : (i) an adiabatic jet with strong Compton cooling  ( Y >1)  and with the cooling frequency ν c locating in the observed energy range; (ii) a radiative jet with a significant fraction of total energy occupied by electrons  ( ε e ∼1)  .  相似文献   

17.
By use of the approximate method of Whitham (1958) the effect of magnetic field is investigated on a point explosion in a medium exihibiting exponential decrease of density and temperature. It has been found that the shock velocity and shock Mach number first decrease, but after a certain distance they start increasing.  相似文献   

18.
A Monte Carlo code ( artis ) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of γ-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model.  相似文献   

19.
We examine the influence of nonadiabatic effects on the modes of an isothermal stratified magnetic atmosphere. The present investigation is a continuation of earlier work by Hasan and Christensen-Dalsgaard (1992) and Banerjee, Hasan, and Christensen-Dalsgaard (1995, 1996), where the interaction of various elementary modes in a stratified magnetized atmosphere was studied in the purely adiabatic limit. The inclusion of radiative dissipation based on Newton's law of cooling demonstrates the importance of this effect in the study of magnetoatmospheric waves. We analyze the physical nature of magnetoacoustic gravity (or MAG) oscillations in the presence of Newtonian cooling and find that the eigenfrequency curves in the diagnostic diagram, as in the previous analysis, undergo avoided crossings. However, the qualitative nature of the mode interaction is strongly influenced by radiative dissipation, which leads to strong mode damping in the avoided-crossing regions. We demonstrate this effect for the interaction between the Lamb mode and a magnetic mode. Our results could be important in the analysis of waves in flux tubes on the Sun.  相似文献   

20.
The relativistic Sunyaev–Zel'dovich (SZ) effect offers a method, independent of X-ray, for measuring the temperature of the intracluster medium (ICM) in the hottest systems. Here, using N -body/hydrodynamic simulations of three galaxy clusters, we compare the two quantities for a non-radiative ICM, and for one that is subject both to radiative cooling and to strong energy feedback from galaxies. Our study has yielded two interesting results. First, in all cases, the SZ temperature is hotter than the X-ray temperature and is within 10 per cent of the virial temperature of the cluster. Secondly, the mean SZ temperature is less affected by cooling and feedback than the X-ray temperature. Both these results can be explained by the SZ temperature being less sensitive to the distribution of cool gas associated with cluster substructure. A comparison of the SZ and X-ray temperatures (measured for a sample of hot clusters) would therefore yield interesting constraints on the thermodynamic structure of the intracluster gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号