首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 796 毫秒
1.
近期在琼东南盆地超深水区发现了L18气田上新统地层圈闭气田,但在聚气背景、烃源岩、储层沉积成因及天然气输导体系等气田形成条件和成藏模式认识存在争议。通过对该气田形成条件的综合分析,认为上新世轴向古洼槽内地层圈闭、陵水凹陷东洼下渐新统崖城组浅海相烃源岩、上新统限制型重力流砂岩储层和渐新统-中新统断裂垂向沟源通道是形成上新统地层圈闭气田的4个基本条件。中中新世以来盆地中央继承性发育轴向古洼槽和限制型重力流沉积,随着后期地层沉积迁移、差异压实作用,上新统莺歌海组砂岩顶面在轴向洼槽内起伏,并被周边泥岩封盖、封堵,形成了地层圈闭;约3.4 Ma BP,陵水凹陷东洼下渐新统崖城组浅海相烃源岩生成了成熟天然气,沿渐新统-中新统断裂向上运移到上新统莺歌海组重力流沉积砂岩中,再侧向运移至地层圈闭中聚集成藏,具有"烃源岩、圈闭、断裂+砂岩输导层"三要素控藏的上新统地层圈闭成藏模式。  相似文献   

2.
神狐海域天然气水合物的特征及其气源   总被引:1,自引:0,他引:1  
我国天然气水合物首钻的钻探结果显示,南海北部陆坡神狐海域的天然气水合物呈分散浸染状分布在以粗粉砂、中粉砂、细粉砂和极细粉砂为主要组分的松散沉积物中。沉积物顶空气组成分析显示,神狐钻探区沉积物中的游离气体主要是烃类气体,另外也有微量的CO2,其中,甲烷含量界于62.11%~99.91%之间,平均含量达到了98.04%。而天然气水合物的气体同位素组成显示,神狐海域形成天然气水合物的烃类气体主要是微生物通过CO2还原的形式生成。在此基础上,进一步分析了神狐海域研究区上中新统上部和上新统微生物成因甲烷的生产力,认为神狐海域具备良好的适合微生物成因甲烷大量生成的地质条件。  相似文献   

3.
准噶尔盆地南缘霍玛吐背斜带经历了复杂的构造变动和演化,地质条件非常复杂,对油气成藏条件特别是油气成因一直存在争议。通过对目前已发现气藏的天然气组分、碳同位素、轻烃组成等特征分析,探讨了霍玛吐背斜带天然气成因类型及来源。组分分析结果表明,霍玛吐背斜带天然气为有机成因湿气,主要为腐殖型干酪根裂解气;碳同位素分析结果表明,霍玛吐背斜带天然气主要为煤型气,既有热解气,也有裂解气;轻烃分析结果表明,霍玛吐背斜带天然气为典型煤型气。综合成因类型分析结果认为,该区天然气主要来源于侏罗系烃源岩的煤系地层,既有热解气,也有裂解气。  相似文献   

4.
天然气水合物气体成因及其来源   总被引:2,自引:0,他引:2  
天然气水合物中烃类气体主要有微生物和热因两种,应用天然气水合物烃类气体的C1/(C2+C3)比值以甲烷的δ^13C同位素组成可以较好地区分气体成因,而甲烷的δD同位素组成可以用于判别CO2还原或醋酸根发酵的微生物成因方式。根据CH4以及CO2的δ^13C同位模式计算以及孔隙水的Br^-含量可以推测天然气水合物的气体来源。  相似文献   

5.
本文旨在厘清东海盆地X凹陷Y气田天然气成因,建立成藏模式,以指导下步勘探部署。本文从天然气组分、烷烃气碳同位素、轻烃、凝析油生物标志化合物等分析入手,系统研究了油气成因类型及来源,并结合构造演化史、生烃史分析,建立了Y气田成藏模式,提出了大中型气田的勘探方向。主要认识如下:(1)天然气组分碳同位素、轻烃和埋藏史分析表明,Y气田天然气为凹中始新统平湖组烃源岩在龙井运动期(距今13 Ma)生成的高成熟煤型气;(2)凝析油姥鲛烷/植烷、规则甾烷等特征,反映了凹中区平湖组烃源岩发育于弱氧化?弱还原潮坪、潟湖沉积环境,生烃母质中存在一定数量的低等水生生物;(3)Y气田具有“凹中区平湖组烃源岩、花港组大型水道砂储集体、挤压构造作用”时空耦合的成藏模式,明确了凹中挤压背斜带是X凹陷大中型气田勘探的主攻方向。  相似文献   

6.
在太平洋—澳大利亚弧前会聚/扭断边界(北爱尔兰东部,新西兰)发生的烃渗漏已持续了近20Ma。沿这500km左右的边界分布的实质流体排出的证据包括13处在下—上中新统获得甲烷的碳酸盐沉积层,达13处现代海上渗漏和350多处海岸油、气和卤水的渗漏。C1—C4烃至丰富海洋源石油的海岸渗漏是由从露头获知的白垩系—上新统地层地球化学有关的热成因和生物成因过程形成的。中新统站位以不同大小(巨砾至300m×100m×40m的土丘)的自生碳酸盐为特征,北部沉积以双壳类为主,并且碳酸盐碳同位素值降低到-51.7‰…  相似文献   

7.
通过系统收集和分析库泰盆地钻井岩屑样品及野外露头样品,首次对下中新统海相油气系统进行了评价。结果发现该区域以生物礁碳酸盐岩为标志层,发育多套海相沉积旋回,海相沉积油气系统具有自生自储自封堵特征:暗色海相泥岩为主力烃源岩,海相砂岩为有利储层,同时,海相泥岩作为有效盖层。下中新统海相烃源岩样品有机质类型为Ⅱ/Ⅲ型,以Ⅱ型为主,总有机碳质量分数(TOC)平均值1.92%,有机质处于低熟-成熟阶段,为有效烃源岩,烃源岩厚度较大,指示良好的生烃潜力;储层多期发育,具有低阻特征。自西向东,库泰盆地油气成藏系统时代变新、层系变浅:①盆地东部望加锡海峡深水-半深水区域以上中新统-上新统深水沉积成藏系统为主;②中部马哈坎三角洲-浅海区域以中中新统三角洲相成藏组合为主;③马哈坎褶皱带以下中新统海相成藏组合为主;④盆地西部以渐新统-始新统裂谷期成藏组合为主。新层段海相油气成藏系统的发现,揭示了库泰盆地有利成藏组合的分带规律,指明了库泰盆地中西部区域的未来油气勘探方向。  相似文献   

8.
根据南海北部边缘盆地天然气(烃类气和非烃气)及非常规天然气-天然气水合物的勘探与研究,对所发现的烃类天然气、CO2等非烃气及天然气水合物等进行了类型划分.生物气及亚生物气在全区海底及浅层广泛分布,气源来自上新统及第四系海相沉积;成熟油型气(油田伴生气)主要分布于北部湾盆地及珠江口盆地北部裂陷带主要油气田分 布区,其气源...  相似文献   

9.
珠江口盆地神狐海域是天然气水合物钻探和试验开采的重点区域,大量钻探取心、测井与地震等综合分析表明不同站位水合物的饱和度、厚度与气源条件存在差异。本文利用天然气水合物调查及深水油气勘探所采集的测井和地震资料建立地质模型,利用PetroMod软件模拟地层的温度场、有机质成熟度、烃源岩生烃量、流体运移路径以及不同烃源岩影响下的水合物饱和度,结果表明:生物成因气分布在海底以下1500 m范围内的有机质未成熟地层,而热成因气分布在深度超过2300 m的成熟、过成熟地层。水合物稳定带内生烃量难以形成水合物,形成水合物气源主要来自于稳定带下方向上运移的生物与热成因气。模拟结果与测井结果对比分析表明,稳定带下部生物成因气能形成的水合物饱和度约为10%,在峡谷脊部的局部区域饱和度较高;相对高饱和度(>40%)水合物形成与文昌组、恩平组的热成因气沿断裂、气烟囱等流体运移通道幕式释放密切相关,W19井形成较高饱和度水合物的甲烷气体中热成因气占比达80%,W17井热成因气占比为73%,而SH2井主要以生物成因为主,因此,不同站位甲烷气体来源占比不同。  相似文献   

10.
在丹麦北部的陆上和海底沉积物中浅层气分布十分普遍。来自海底两个渗漏区的天然气主要由CH4和少量的N2、CO2和O2组成(表1)。样品中未检测出存在有重烃。表1海底渗漏区气体的化学成分和同位素组成Table 1 Chemical and isotopic composition ofgas from submarine seeps地点水深/mCH4/%CO2/%N2/%O2+Ar/%δ13CCH4(‰)δ2HCH4(‰)NordreRonner12 94·8 2·1 3·0 0·1-68·4-191Hirsholmene 10 98·6 0·3 0·8 0·2-65·3-168上述两个渗漏区甲烷的C、H同位素比率(表1)表明,天然气为CO2降解产生的细菌成因气。细菌成因气的另外一…  相似文献   

11.
Geochemical characteristics of organic matter in the profiles of Dukla, Silesian, Sub-Silesian and Skole units of the Polish Outer Carpathians and of the Palaeozoic–Mesozoic basement in the Dębica-Rzeszów-Leżajsk-Sanok area were established based on Rock-Eval, vitrinite reflectance, isotopic and biomarker analyses of 485 rock samples. The Oligocene Menilite beds have the best hydrocarbon potential of all investigated formations within the Dukla, Silesian, and Skole units. The Ordovician, Silurian, Lower Devonian and locally Middle Jurassic strata of the Palaeozoic–Mesozoic basement are potential source rocks for oil and gas accumulated in Palaeozoic and Mesozoic reservoirs. Thirty one natural gas samples from sandstone reservoirs of the Lower Cretaceous-Lower Miocene strata within the Outer Carpathian sequence and eight from sandstone and carbonate reservoirs of the Palaeozoic–Mesozoic basement were analysed for molecular and isotopic compositions to determine their origin. Natural gases accumulated both in the Outer Carpathian and the Palaeozoic–Mesozoic basement reservoirs are genetically related to thermogenic and microbial processes. Thermogenic gaseous hydrocarbons that accumulated in the Dukla and Silesian units were generated from the Menilite beds. Thermogenic gaseous hydrocarbons that accumulated in the Sub-Silesian Unit most probably migrated from the Silesian Unit. Initial, and probably also secondary microbial methane component has been generated during microbial carbon dioxide reduction within the Oligocene Menilite beds in the Dukla Unit and Oligocene-Lower Miocene Krosno beds in the Silesian Unit. Natural gases that accumulated in traps within the Middle Devonian, Mississippian, Upper Jurassic, and Upper Cretaceous reservoirs of the Palaeozoic–Mesozoic basement were mainly generated during thermogenic processes and only sporadically from initial microbial processes. The thermogenic gases were generated from kerogen of the Ordovician-Silurian and Middle Jurassic strata. The microbial methane component occurs in a few fields of the Dukla and Silesian units and in the two accumulations in the Middle Devonian reservoirs of the Palaeozoic–Mesozoic basement.  相似文献   

12.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   

13.
The Late Miocene Zeit Formation is exposed in the Red Sea Basin of Sudan and represents an important oil-source rock. In this study, five (5) exploratory wells along Red Sea Basin of Sudan are used to model the petroleum generation and expulsion history of the Zeit Formation. Burial/thermal models illustrate that the Red Sea is an extensional rift basin and initially developed during the Late Eocene to Oligocene. Heat flow models show that the present-day heat flow values in the area are between 60 and 109 mW/m2. The variation in values of the heat flow can be linked to the raise in the geothermal gradient from margins of the basin towards offshore basin. The offshore basin is an axial area with thick burial depth, which is the principal heat flow source.The paleo-heat flow values of the basin are approximately from 95 to 260 mW/m2, increased from Oligocene to Early Pliocene and then decreased exponentially prior to Late Pliocene. This high paleo-heat flow had a considerable effect on the source rock maturation and cooking of the organic matter. The maturity history models indicate that the Zeit Formation source rock passed the late oil-window and converted the oil generated to gas during the Late Miocene.The basin models also indicate that the petroleum was expelled from the Zeit source rock during the Late Miocene (>7 Ma) and it continues to present-day, with transformation ratio of more than 50%. Therefore, the Zeit Formation acts as an effective source rock where significant amounts of petroleum are expected to be generated in the Red Sea Basin.  相似文献   

14.
Trawling of the bottom in the northeastern Kara Sea during cruise 125 of the R/V Professor Shtokman in 2013 recovered a block of cavernous, partly phosphatized carbonate rock consisting of biogenic carbonate material and partly crystallized diagenetic calcite. The fauna remains are mainly Oligocene–Pliocene planktonic and benthic foraminifers, with less common Oligocene–Miocene coccoliths and single wormlike organisms. Part of the phosphatized material in caverns is impregnated by manganese and iron oxides and enriched in heavy and trace metals. According to the oxygen isotopic composition, this rock formed under moderate temperature conditions. In terms of morphology, mineralogy, and the abundance of organic remains, the block is comparable to methanogenic carbonates found in other parts of the ocean, but shows no isotopically light carbon signatures typical of methane activity. This indicates the diversity of the carbon isotope composition of the Arctic carbonates.  相似文献   

15.
琼东南盆地物源和沉积环境变化的重矿物证据   总被引:5,自引:0,他引:5  
基于11口钻井岩心样品的重矿物数据,结合古生物学、元素地球化学和地震资料,对琼东南盆地的物源及沉积环境演变进行了分析.结果表明,盆地基底沉积以陆相沉积为主,自渐新世起,盆地逐渐接受海侵,大致经历了海陆过渡→滨浅海→浅海→半深海的沉积环境演变过程,水深总体呈逐渐增大的趋势且在同一时期南部区域水深整体上大于北部.随着沉积环境的变化,各地层(崖城组至莺歌海组)物源呈现出多源性特征,经历了原地→近源→远源的演变过程.在渐新世早期,物源以近源玄武质火山碎屑和邻区陆源碎屑为主,之后演变为远源的陆壳碎屑,物源区包括北部海南岛、南部永乐隆起、东北部神狐隆起、西部红河、西南部中南半岛乃至更广的区域.海南岛物源自早渐新世便开始发育,至中中新世成为盆地最主要的物源,并持续至现今;永乐隆起和神狐隆起物源在晚渐新世至早中新世期间最为发育,于中中新世逐渐消退;红河物源于晚中新世大规模加入,为中央峡谷的主要沉积物源,影响至上新世结束;中南半岛莺西物源自上新世发育,影响至更新世时期.此外,自生组分对盆地(尤其是南部区域)的沉积贡献也不容忽视.  相似文献   

16.
This study provides the results of the first integrated study of Oligocene–Pliocene basins around Norway.Within the study area, three main depocentres have been identified where sandy sediments accumulated throughout the Oligocene to Early Pliocene period. The depocentre in the Norwegian–Danish Basin received sediments from the southern Scandes Mountains, with a general progradation from north to south during the studied period. The depocentre in the basinal areas of the UK and Norwegian sectors of the North Sea north of 58°N received sediments from the Scotland–Shetland area. Because of the sedimentary infilling there was a gradual shallowing of the northern North Sea basin in the Oligocene and Miocene. A smaller depocentre is identified offshore northern Nordland between Ranafjorden (approximately 66°N) and Vesterålen (approximately 68°N) where the northern Scandes Mountains were the source of the Oligocene to Early Pliocene sediments. In other local depocentres along the west coast of Norway, sandy sedimentation occurred in only parts of the period. Shifts in local depocentres are indicative of changes in the paleogeography in the source areas.In the Barents Sea and south to approximately 68°N, the Oligocene to Early Pliocene section is eroded except for distal fine-grained and biogenic deposits along the western margin and on the oceanic crust. This margin was undergoing deformation in a strike-slip regime until the Eocene–Oligocene transition. The Early Oligocene sediments dated in the Vestbakken Volcanic Province and the Forlandssundet Basin represent the termination of this strike-slip regime.The change in the plate tectonic regime at the Eocene–Oligocene transition affected mainly the northern part of the study area, and was followed by a quiet tectonic period until the Middle Miocene, when large compressional dome and basin structures were formed in the Norwegian Sea. The Middle Miocene event is correlated with a relative fall in sea level in the main depocentres in the North Sea, formation of a large delta in the Viking Graben (Frigg area) and uplift of the North and South Scandes domes. In the Norwegian–Danish Basin, the Sorgenfrei-Tornquist Zone was reactivated in the Early Miocene, possibly causing a shift in the deltaic progradation towards the east. A Late Pliocene relative rise in sea level resulted in low sedimentation rates in the main depositional areas until the onset of glaciations at about 2.7 Ma when the Scandes Mountains were strongly eroded and became a major source of sediments for the Norwegian shelf, whilst the Frigg delta prograded farther to the northeast.  相似文献   

17.
A synthesis of high-resolution (Chirp, 2–7 kHz) subbottom profiles in the Ulleung Basin reveals patchy distribution of shallow (<90 m subbottom depth) gassy sediments in the eastern basin plain below 1,800-m water depth. The shallow gases in the sediments are associated with acoustic turbidities, columnar acoustic blankings, enhanced reflectors, dome structures, and pockmarks. Analyses of gas samples collected from a piston core in an earlier study suggest that the shallow gases are thermogenic in origin. Also, published data showing high amounts of organic matter in thick sections of marine shale (middle Miocene to lower Pliocene sequence) and high heat flow in the basin plain sediments are consistent with the formation of deep, thermogenic gas. In multi-channel deep seismic profiles, numerous acoustic chimneys and faults reflect that the deep, thermogenic gas would have migrated upwards from the deeper subsurface to the near-seafloor. The upward-migrating gases may have accumulated in porous debrites and turbidites (upper Pliocene sequence) overlain by impermeable hemipelagites (Quaternary sequence), resulting in the patchy distribution of shallow gases on the eastern basin plain.  相似文献   

18.
The East Sea (Japan Sea) is a semi-enclosed back-arc basin that is thought to preserve a significant record of tectonic evolution and paleo-climatic changes of Eastern Asia during the Neogene. We use here 2-D regional multi-channel seismic reflection profiles and borehole data from Expedition 346 of the Integrated Ocean Drilling Program (IODP) to provide new constraints on the geological history of the Eastern South Korea Plateau (ESKP). The ESKP represents a structurally-complex basement high in the southwestern East Sea which formed during rifting of the back-arc basin. Our new observations show that the ESKP is composed of numerous horsts and grabens controlled by NE-trending normal faults. The acoustic basement is blanketed by Oligocene to recent sediments that have preferentially accumulated in topographic lows (up to 1.5 km thick) and have been cored during Expedition 346 at Site U1430 close to the southern margin of the ESKP. Seismic profiles in the ESKP reveal three units separated by regional unconformities. These seismic units closely correspond to IODP lithostratigraphic units defined at Site U1430, where biostratigraphic data can be used to constrain the timing of three main evolutionary stages of the ESKP. Stage 1 was related to rifting in the late Oligocene and middle Miocene, terminated by a regional uplift leading to an erosional phase in the middle Miocene. Stage 2 was associated with subsidence in the middle and late Miocene and uplift and accompanying erosion or non-deposition in the latest late Miocene. Stage 3 (Pliocene to present) recorded overall uniform hemipelagic-pelagic subsidence of the ESKP with short-lived tectonically-induced uplifts in the late middle Miocene and latest Miocene-early Pliocene. The three stages of evolution of the ESKP closely correlate to sedimentary changes since the Oligocene and suggest a direct control of regional/local tectonics on sedimentation patterns in the southwestern East Sea, with secondary influence of regional climatic and paleo-oceanographic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号