首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

2.
Wetland ecosystems have experienced dramatic challenges in the past few decades due to natural and human factors. Wetland maps are essential for the conservation and management of terrestrial ecosystems. This study is to obtain an accurate wetland map using an object-based stacked generalization (Stacking) method on the basis of multi-temporal Sentinel-1 and Sentinel-2 data. Firstly, the Robust Adaptive Spatial Temporal Fusion Model (RASTFM) is used to get time series Sentinel-2 NDVI, from which the vegetation phenology variables are derived by the threshold method. Subsequently, both vertical transmit-vertical receive (VV) and vertical transmit-horizontal receive (VH) polarization backscatters (σ0 VV, σ0 VH) are obtained using the time series Sentinel-1 images. Speckle noise inherent in SAR data, resulting in over-segmentation or under-segmentation, can affect image segmentation and degrade the accuracies of wetland classification. Therefore, we segment Sentinel-2 multispectral images to delineate meaningful objects in this study. Then, in order to reduce data redundancy and computation time, we analyze the optimal feature combination using the Sentinel-2 multispectral images, Sentinel-2 NDVI time series, phenological variables and other vegetation index derived from Sentinel-2 multispectral images, as well as time series Sentinel-1 backscatters at the object level. Finally, the stacked generalization algorithm is utilized to extract the wetland information based on the optimal feature combination in the Dongting Lake wetland. The overall accuracy and Kappa coefficient of the object-based stacked generalization method are 92.46% and 0.92, which are 3.88% and 0.04 higher than that using the pixel-based method. Moreover, the object-based stacked generalization algorithm is superior to single classifiers in classifying vegetation of high heterogeneity areas.  相似文献   

3.
The goal of this research was to conduct an initial investigation into whether a time-series NDVI reference curve library for crops over a growing season for one year could be used to map crops for a different year. Time-series NDVI libraries of curves for 2001 and 2005 were investigated to ascertain whether or not the 2001 dataset could be used to map crops for 2005. The 2005 16-day composite MODIS 250 m NDVI data were used to extract NDVI values from 1,615 field sites representing alfalfa, corn, sorghum, soybeans, and winter wheat. A k-means cluster analysis of NDVI values from the field sites was performed to identify validation sites with time-series NDVI spectral profiles characteristic of the major crop types grown in Kansas. After completing the field site refinement process, there were 1,254 field sites retained for further analysis, referred to as "final" field sites. The methods employed to evaluate whether the MODIS-based NDVI profiles for major crops in Kansas are stable from year-to-year involved both graphical and statistical analyses. First, the time-series NDVI values for 2005 from the final field sites were aggregated by crop type and the crop NDVI profiles were then visually assessed and compared to the profiles of 2001 to ascertain if each crop's unique phenological pattern was consistent between the two years. Second, separability within each crop class in the time-series NDVI data between 2001 and 2005 was investigated numerically using the Jeffries-Matusita (JM) distance statistic. The results seem to suggest that time-series NDVI response curves for crops over a growing period for one year of valid ground reference data may be useful for mapping crops for a different year when minor temporal shifts in the NDVI values (resulting from inter-annual climate variations or changes in agricultural management practices) are taken into account.  相似文献   

4.
The accurate and timely information of crop area is vital for crop production and food security. In this study, the Enhanced Vegetation Index (EVI) data from MODerate resolution Imaging Spectroradiometer (MODIS) integrated crop phenological information was used to estimate the maize cultivated area over a large scale in Northeast China. The fine spatial resolution China’s Environment Satellite (HJ-1 satellite) images and the support vector machine (SVM) algorithm were employed to discriminate distribution of maize in the reference area. The mean MODIS–EVI time series curve of maize was extracted in the reference area by using multiple periods MODIS–EVI data. By analysing the temporal shift of crop calendars from northern to southern parts in Northeast China, the lag value was derived from phenological data of twenty-one agro-meteorological stations; here integrating with the mean MODIS–EVI time series image of maize, a standard MODIS–EVI time series image of maize was obtained in the whole study area. By calculating mean absolute distances (MAD) map between standard MODIS–EVI image and mean MODIS–EVI time series images, and setting appropriate thresholds in three provinces, the maize cultivated area was extracted in Northeast China. The results showed that the overall classification accuracy of maize cultivated area was approximately 79%. At the county level, the MODIS-derived maize cultivated area and statistical data were well correlated (R2 = 0.82, RMSE = 283.98) over whole Northeast China. It demonstrated that MODIS–EVI time series data integrated with crop phenological information can be used to improve the extraction accuracy of crop cultivated area over a large scale.  相似文献   

5.
This study investigated rice cropping practices and rice growing areas in the Vietnamese Mekong Delta using MODIS 250 × 250 m normalized difference vegetation index (NDVI) data acquired during the 2002 and 2007 rice cropping seasons. Data processing was conducted in five main steps: (1) constructing time-series MODIS NDVI data; (2) noise filtering of the time-series MODIS NDVI data using empirical mode decomposition (EMD); (3) extracting and evaluating phenological rice training patterns from the smooth time profiles of NDVI; (4) classifying rice cropping systems using support vector machines (SVMs); and (5) conducting an error analysis using ground reference data and government rice statistics. The results indicated that EMD was an efficient filter for noise removal in the time-series MODIS NDVI data. The filtered temporal NDVI profile characterized the distinct behaviors of the rice cropping systems. The estimated sowing and harvesting dates were compared with the field-survey data and indicated root mean square error (RMSE) values of 7.5 and 8.2 days, respectively. The comparison results between the 2002 classification map and the ground reference data indicated that the overall accuracy for the 2002 data was 92.9% with a Kappa coefficient of 0.89, while in 2007 these values were 93.8% and 0.90, respectively. At the district level, there was good agreement between the MODIS-based estimated areas and government rice statistics for 2002 and 2007 (R 2 ≥ 0.85). An investigation of changes in cropping practices from 2002 to 2007 showed that 12.9% of the area used for double-cropped irrigated rice in 2002 had been converted to triple-cropped irrigated rice by 2007, whereas 27.4% of the area used for triple-cropped irrigated rice in 2002 had been converted to double-cropped irrigated rice by 2007.  相似文献   

6.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

7.
基于MODIS-NDVI数据分析澜沧江流域生长季植被NDVI时空特征和变化趋势,结合地形数据、气象站点数据和植被类型数据,利用趋势分析和相关性分析法研究植被NDVI变化对气候因子的响应。结果表明:1)2000-2017年澜沧江流域生长季植被NDVI均值为0.592,整体呈现出由西北向东南波动增加趋势,增长速率为0.09%/10年;2) 2000-2017年澜沧江流域气温呈上升趋势,降水呈下降趋势,植被NDVII总体与平均气温的相关性高于累积降水量;3)澜沧江流域生长季植被NDVI驱动因子分析表明,气候驱动中以气温降水联合驱动为主,流域植被NDVI变化整体为非气候驱动。  相似文献   

8.
Remote sensing techniques are capable of identifying a particular crop as well as monitoring its growing stages, crop vigor, and biomass. Due to the increasing demand for food staples, potato cultivation in Bangladesh has increased substantially over the last decade. A study was carried out in the Munshiganj area, the main potato-producing district in Bangladesh, to assess the growth of potatoes by modeling its important life metrics. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) products were extracted from MODIS Surface Reflectance Eight-Day L3 Global 500 m data from November 25, 2005 to March 6, 2006. NDVI and LAI were extracted for 50 selected fields in the study area and used to construct potato phenological curves. Twenty-two life metrics were derived for potato from the phenological curves. The first 12 metrics are the basic life metrics of potato and the others are supplementary. Results showed a significant amplitude and distinct response period of these vegetation indices. Based on the phenological curves, the spatial distribution of potato growth was estimated for the study area for both NDVI and LAI. The effect of temperature on crop phenology was examined during the potato growing season. It was found that significant growth occurred when the temperature was relatively low. This study demonstrates that remote sensing data can be effectively used to study potato growth in Bangladesh.  相似文献   

9.
Droughts induce livestock losses that severely affect Kenyan pastoralists. Recent index insurance schemes have the potential of being a viable tool for insuring pastoralists against drought-related risk. Such schemes require as input a forage scarcity (or drought) index that can be reliably updated in near real-time, and that strongly relates to livestock mortality. Generally, a long record (>25 years) of the index is needed to correctly estimate mortality risk and calculate the related insurance premium. Data from current operational satellites used for large-scale vegetation monitoring span over a maximum of 15 years, a time period that is considered insufficient for accurate premium computation. This study examines how operational NDVI datasets compare to, and could be combined with the non-operational recently constructed 30-year GIMMS AVHRR record (1981–2011) to provide a near-real time drought index with a long term archive for the arid lands of Kenya. We compared six freely available, near-real time NDVI products: five from MODIS and one from SPOT-VEGETATION. Prior to comparison, all datasets were averaged in time for the two vegetative seasons in Kenya, and aggregated spatially at the administrative division level at which the insurance is offered. The feasibility of extending the resulting aggregated drought indices back in time was assessed using jackknifed R2 statistics (leave-one-year-out) for the overlapping period 2002–2011. We found that division-specific models were more effective than a global model for linking the division-level temporal variability of the index between NDVI products. Based on our results, good scope exists for historically extending the aggregated drought index, thus providing a longer operational record for insurance purposes. We showed that this extension may have large effects on the calculated insurance premium. Finally, we discuss several possible improvements to the drought index.  相似文献   

10.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

11.
Planting a cover crop between the main cropping seasons is an agricultural management measure with multiple potential benefits for sustainable food production. In the maize production system of the Netherlands, an effective establishment of a winter cover crop is important for reducing nitrogen leaching to groundwater. Cover crop establishment after maize cultivation is obliged by law for sandy soils and consequently implemented on nearly all maize fields, but the winter-time vegetative ground cover varies significantly between fields. The objectives of this study are to assess the variability in winter vegetative cover and evaluate to what extent this variability can be explained by the timing of cover crop establishment and weather conditions in two growing seasons (2017–2018). We used Sentinel-2 satellite imagery to construct NDVI time series for fields known to be cultivated with maize within the province of Overijssel. We fitted piecewise logistic functions to the time series in order to estimate cover crop sowing date and retrieve the fitted NDVI value for 1 December (NDVIDec). We used NDVIDec to represent the quality of cover crop establishment at the start of the winter season. The Sentinel-2 estimated sowing dates compared reasonably with ground reference data for eight fields (RMSE = 6.6 days). The two analysed years differed considerably, with 2018 being much drier and warmer during summer. This drought resulted in an earlier estimated cover crop sowing date (on average 19 days) and an NDVIDec value that was 0.2 higher than in 2017. Combining both years and all fields, we found that Sentinel-2 retrieved sowing dates could explain 55% of the NDVIDec variability. This corresponded to a positive relationship (R2 = 0.50) between NDVIDec and the cumulative growing degree days (GDD) between sowing date and 1 December until reaching 400 GDD. Based on cumulative GDD derived from two weather stations within Overijssel, we found that on average for the past three decades a sowing date of 19 September (± 7 days) allowed to attain these 400 GDD; this provides support for the current legislation that states that from 2019 onwards a cover crop should be sown before 1 October. To meet this deadline, while simultaneously ascertaining a harvest-ready main crop, in practice implies that undersowing of the cover crop during spring will gain importance. Our results show that Sentinel-2 NDVI time series can assess the effectiveness and timing of cover crop growth for small agricultural fields, and as such has potential to inform regulatory frameworks as well as farmers with actionable information that may help to reduce nitrogen leaching.  相似文献   

12.
ABSTRACT

The temporal resolution of vegetation indices (VIs) determines the details of seasonal variation in vegetation dynamics observed by remote sensing, but little has been known about how the temporal resolution of VIs affects the retrieval of land surface phenology (LSP) of grasslands. This study evaluated the impact of temporal resolution of MODIS NDVI, EVI, and per-pixel green chromatic coordinate (GCCpp) on the quality and accuracy of the estimated LSP metrics of prairie grasslands. The near-surface PheonoCam phenology data for grasslands centered over Lethbridge PhenoCam grassland site were used as the validation datasets due to the lack of in situ observations for grasslands in the Prairie Ecozone. MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data from 2001 to 2017 were used to compute the time series of daily reference and to simulate 2–32 day MODIS VIs. The daily reference and simulated multi-day time series were fitted with the double logistic model, and the LSP metrics were then retrieved from the modeled daily time series separately. Comparison within satellite-based estimates showed no significant difference in the phenological metrics derived from daily reference and multi-day VIs resampled at a time step less than 18 days. Moreover, a significant decline in the ability of multi-day VIs to predict detailed temporal dynamics of daily reference VIs was revealed as the temporal resolution increased. Besides, there were a variety of trends for the onset of phenological transitions as the temporal resolution of VIs changed from 1 to 32 days. Comparison with PhenoCam phenology data presented small and insignificant differences in the mean bias error (MBE) and the mean absolute error (MAE) of grassland phenological metrics derived from daily, 8-, 10-, 14-, and 16-day MODIS VIs. Overall, this study suggested that the MODIS VIs resampled at a time step less than 18 days are favorable for the detection of grassland phenological transitions and detailed seasonal dynamics in the Prairie Ecozone.  相似文献   

13.
With the availability of high frequent satellite data, crop phenology could be accurately mapped using time-series remote sensing data. Vegetation index time-series data derived from AVHRR, MODIS, and SPOT-VEGETATION images usually have coarse spatial resolution. Mapping crop phenology parameters using higher spatial resolution images (e.g., Landsat TM-like) is unprecedented. Recently launched HJ-1 A/B CCD sensors boarded on China Environment Satellite provided a feasible and ideal data source for the construction of high spatio-temporal resolution vegetation index time-series. This paper presented a comprehensive method to construct NDVI time-series dataset derived from HJ-1 A/B CCD and demonstrated its application in cropland areas. The procedures of time-series data construction included image preprocessing, signal filtering, and interpolation for daily NDVI images then the NDVI time-series could present a smooth and complete phenological cycle. To demonstrate its application, TIMESAT program was employed to extract phenology parameters of crop lands located in Guanzhong Plain, China. The small-scale test showed that the crop season start/end derived from HJ-1 A/B NDVI time-series was comparable with local agro-metrological observation. The methodology for reconstructing time-series remote sensing data had been proved feasible, though forgoing researches will improve this a lot in mapping crop phenology. Last but not least, further studies should be focused on field-data collection, smoothing method and phenology definitions using time-series remote sensing data.  相似文献   

14.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

15.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。  相似文献   

16.
Recent developments in remote sensing technology, in particular improved spatial and temporal resolution, open new possibilities for estimating crop acreage over larger areas. Remotely sensed data allow in some cases the estimation of crop acreage statistics independently of sub-national survey statistics, which are sometimes biased and incomplete. This work focuses on the use of MODIS data acquired in 2001/2002 over the Rostov Oblast in Russia, by the Azov Sea. The region is characterised by large agricultural fields of around 75 ha on average. This paper presents a methodology to estimate crop acreage using the MODIS 16-day composite NDVI product. Particular emphasis is placed on a good quality crop mask and a good quality validation dataset. In order to have a second dataset which can be used for cross-checking the MODIS classification a Landsat ETM time series for four different dates in the season of 2002 was acquired and classified. We attempted to distinguish five different crop types and achieved satisfactory and good results for winter crops. Three hundred and sixty fields were identified to be suitable for the training and validation of the MODIS classification using a maximum likelihood classification. A novel method based on a pure pixel field sampling is introduced. This novel method is compared with the traditional hard classification of mixed pixels and was found to be superior.  相似文献   

17.
Satellite Remote Sensing, with both optical and SAR instruments, can provide distributed observations of snow cover over extended and inaccessible areas. Both instruments are complementary, but there have been limited attempts at combining their measurements. We describe a novel approach to produce monthly maps of dry and wet snow areas through application of data fusion techniques to MODIS fractional snow cover and Sentinel-1 wet snow mask, facilitated by Google Earth Engine. The method is demonstrated in a 55,000 km2 river basin in the Indian Himalayan region over a period of ∼2.5 years, although it can be applied to any areas of the world where Sentinel-1 data are routinely available. The typical underestimation of wet snow area by SAR is corrected using a digital elevation model to estimate the average melting altitude. We also present an empirical model to derive the fractional cover of wet snow from Sentinel-1. Finally, we demonstrate that Sentinel-1 effectively complements MODIS as it highlights a snowmelt phase which occurs with a decrease in snow depth but no/little decrease in snowpack area. Further developments are now needed to incorporate these high resolution observations of snow areas as inputs to hydrological models for better runoff analysis and improved management of water resources and flood risk.  相似文献   

18.
Rice is the most consumed staple food in the world and a key crop for food security. Much of the world’s rice is produced and consumed in Asia where cropping intensity is often greater than 100% (more than one crop per year), yet this intensity is not sufficiently represented in many land use products. Agricultural practices and investments vary by season due to the different challenges faced, such as drought, salinity, or flooding, and the different requirements such as varietal choice, water source, inputs, and crop establishment methods. Thus, spatial and temporal information on the seasonal extent of rice is an important input to decision making related to increased agricultural productivity and the sustainable use of limited natural resources. The goal of this study was to demonstrate that hyper temporal moderate-resolution imaging spectroradiometer (MODIS) data can be used to map the spatial distribution of the seasonal rice crop extent and area. The study was conducted in Bangladesh where rice can be cropped once, twice, or three times a year.MODIS normalized difference vegetation index (NDVI) maximum value composite (MVC) data at 500 m resolution along with seasonal field-plot information from year 2010 were used to map rice crop extent and area for three seasons, boro (December/January–April), aus (April/May–June/July), and aman (July/August–November/December), in Bangladesh. A subset of the field-plot information was used to assess the pixel-level accuracy of the MODIS-derived rice area. Seasonal district-level rice area statistics were used to assess the accuracy of the rice area estimates. When compared to field-plot data, the maps of rice versus non-rice exceeded 90% accuracy in all three seasons and the accuracy of the five rice classes varied from 78% to 90% across the three seasons. On average, the MODIS-derived rice area estimates were 6% higher than the sub-national statistics during boro, 7% higher during aus, and 3% higher during the aman season. The MODIS-derived sub-national areas explained (R2 values) 96%, 93%, and 96% of the variability at the district level for boro, aus, and aman seasons, respectively.The results demonstrated that the methods we applied for analysing and interpreting moderate spatial and high temporal resolution imagery can accurately capture the seasonal variability in rice crop extent and area. We discuss the robustness of the approach and highlight issues that must be addressed before similar methods are used across other areas of Asia where a mix of rainfed, irrigated, or supplemental irrigation permits single, double, and triple cropping in a single calendar year.  相似文献   

19.
Crop identification is the basis of crop monitoring using remote sensing. Remote sensing the extent and distribution of individual crop types has proven useful to a wide range of users, including policy-makers, farmers, and scientists. Northern China is not merely the political, economic, and cultural centre of China, but also an important base for grain production. Its main grains are wheat, maize, and cotton. By employing the Fourier analysis method, we studied crop planting patterns in the Northern China plain. Then, using time-series EOS-MODIS NDVI data, we extracted the key parameters to discriminate crop types. The results showed that the estimated area and the statistics were correlated well at the county-level. Furthermore, there was little difference between the crop area estimated by the MODIS data and the statistics at province-level. Our study shows that the method we designed is promising for use in regional spatial scale crop mapping in Northern China using the MODIS NDVI time-series.  相似文献   

20.
In Africa, food security early warning systems use satellite-derived data concerning crop conditions and agricultural production. Such systems can be improved if they are provided with a more reliable estimation of the cultivated area at national scale. This paper evaluates the potential of using time series from the MODerate resolution Imaging Spectroradiometer MOD13Q1 (16-day composite of normalized difference vegetation index at 250 m resolution) to extract cultivated areas in the fragmented rural landscapes of Mali. To this end, we first stratified Southern Mali into 13 rural landscapes based on the spatio-temporal variability of NDVI and textural indices, using an object-oriented classification scheme.The accuracy of the resulting map (MODIScrop) and how it compares with existing coarse-resolution global land products (GLC2000 Africa, GLOBCOVER, MODIS V05 and ECOCLIMAP-II), was then assessed against six crop/non-crop maps derived from SPOT 2.5 m resolution images used as references. For crop areal coverage, the MODIScrop cultivated map was successful in assessing the overall cultivated area at five out of the six validation sites (less than 6% of the absolute difference), while in terms of crop spatial distribution, the producer accuracy was between 33.1% and 80.8%. This accuracy was linearly correlated with the mean patch size index calculated on the SPOT crop maps (r2 = 0.8). Using the Pareto boundary as an accuracy assessment method at the study sites, we showed that (i) 20-40% of the classification crop error was due to the spatial resolution of the MODIS sensor (250 m), and that (ii) compared to MODIS V05, which otherwise performed better than the other existing products, MODIScrop generally minimized omission-commission errors. A spatial validation of the different products was carried out using SPOT image classifications as reference. In the corresponding error matrices, the fraction of correctly classified pixels for our product was 70%, compared to 58% for MODIS V05, while it ranged between 40% and 51% for the GLC2000, the ECOCLIMAP-II and the GLOBCOVER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号