首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Land cover monitoring using digital Earth data requires robust classification methods that allow the accurate mapping of complex land cover categories. This paper discusses the crucial issues related to the application of different up-to-date machine learning classifiers: classification trees (CT), artificial neural networks (ANN), support vector machines (SVM) and random forest (RF). The analysis of the statistical significance of the differences between the performance of these algorithms, as well as sensitivity to data set size reduction and noise were also analysed. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land cover categories in south Spain. Overall, statistically similar accuracies of over 91% were obtained for ANN, SVM and RF. However, the findings of this study show differences in the accuracy of the classifiers, being RF the most accurate classifier with a very simple parameterization. SVM, followed by RF, was the most robust classifier to noise and data reduction. Significant differences in their performances were only reached for thresholds of noise and data reduction greater than 20% (noise, SVM) and 25% (noise, RF), and 80% (reduction, SVM) and 50% (reduction, RF), respectively.  相似文献   

2.
Despite the high richness of information content provided by airborne hyperspectral data, detailed urban land-cover mapping is still a challenging task. An important topic in hyperspectral remote sensing is the issue of high dimensionality, which is commonly addressed by dimensionality reduction techniques. While many studies focus on methodological developments in data reduction, less attention is paid to the assessment of the proposed methods in detailed urban hyperspectral land-cover mapping, using state-of-the-art image classification approaches. In this study we evaluate the potential of two unsupervised data reduction techniques, the Autoassociative Neural Network (AANN) and the BandClust method – the first a transformation based approach, the second a feature-selection based approach – for mapping of urban land cover at a high level of thematic detail, using an APEX 288-band hyperspectral dataset. Both methods were tested in combination with four state-of-the-art machine learning classifiers: Random Forest (RF), AdaBoost (ADB), the multiple layer perceptron (MLP), and support vector machines (SVM). When used in combination with a strong learner (MLP, SVM) BandClust produces classification accuracies similar to or higher than obtained with the full dataset, demonstrating the method’s capability of preserving critical spectral information, required for the classifier to successfully distinguish between the 22 urban land-cover classes defined in this study. In the AANN data reduction process, on the other hand, important spectral information seems to be compromised or lost, resulting in lower accuracies for three of the four classifiers tested. Detailed analysis of accuracies at class level confirms the superiority of the SVM/Bandclust combination for accurate urban land-cover mapping using a reduced hyperspectral dataset. This study also demonstrates the potential of the new APEX sensor data for detailed mapping of land cover in spatially and spectrally complex urban areas.  相似文献   

3.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

4.
高光谱遥感影像多级联森林深度网络分类算法   总被引:1,自引:1,他引:0  
高光谱遥感技术在环境监测、应急保障、精细地物提取等方面有着广泛的应用,随着高分五号高光谱数据的正式发布,高光谱遥感技术将发挥更重要的作用。遥感影像分类作为高光谱遥感影像信息处理的重要部分,已成为当前研究重点。本文针对传统多级联森林深度学习中模型复杂、无法利用基分类器差异信息、对类间差异较小的样本无法正确区分等不足,提出了一种改进的多级联森林深度学习模型,在模型框架中,分别采用了随机森林和旋转森林作为基分类器,并引入逻辑回归分类器作为判别器用于训练层扩展。相较于传统的深度神经网络,改进的多级联森林深度网络超参数较少且能够自适应确定训练层,更方便进行模型优化。实验采用了高分五号数据集及两个公开的高光谱数据集(Indian Pines数据集及Pavia University数据集)进行精度评定,同时选择了传统分类器支持向量机、深度置信网等模型作为对比分析。实验结果表明,改进的多级联森林深度学习模型能有效地进行高光谱遥感影像分类,且较传统的分类方法精度有所提升。  相似文献   

5.
Tree species composition of forest stand is an important indicator of forest inventory attributes for assessing ecosystem health, understanding successional processes, and digitally displaying forest biodiversity. In this study, we acquired high spatial resolution multispectral and RGB imagery over a subtropical natural forest in southwest China using a fixed-wing UAV system. Digital aerial photogrammetric (DAP) technique was used to generate multi-spectral and RGB derived point clouds, upon which individual tree crown (ITC) delineation algorithms and a machine learning classifier were used to identify dominant tree species. To do so, the structure-from-motion method was used to generate RGB imagery-based DAP point clouds. Then, three ITC delineation algorithms (i.e., point cloud segmentation (PCS), image-based multiresolution segmentation (IMRS), and advanced multiresolution segmentation (AMRS)) were used and assessed for ITC detection. Finally, tree-level metrics (i.e., multispectral, texture and point cloud metrics) were used as metrics in the random forest classifier used to classify eight dominant tree species. Results indicated that the accuracy of the AMRS ITC segmentation was highest (F1-score = 82.5 %), followed by the segmentation using PCS (F1-score = 79.6 %), the IMRS exhibited the lowest accuracy (F1-score = 78.6 %); forest types classification (coniferous and deciduous) had a higher accuracy than the classification of all eight tree species, and the combination of spectral, texture and structural metrics had the highest classification accuracy (overall accuracy = 80.20 %). In the classification of both eight tree species and two forest types, the classification accuracies were lowest when only using spectral metrics, indicated that the texture metrics and point cloud structural metrics had a positive impact on the classification (the overall accuracy and kappa accuracy increased by 1.49–4.46 % and 2.86–6.84 %, respectively).  相似文献   

6.
提出了一种基于误差分析的组合分类器,通过结合两种监督分类方法,提出的算法分别估计了两种监督分类方法在计算过程中的误差,给出了规则输出的置信区间,再根据置信区间的大小对两种分类方法的输出结果进行加权平均,从而得到更精确的规则输出.利用该方法对遥感图像进行分类实验,在不同训练样本分布与不同训练样本数量的情况下,比较新的组合分类器与单一分类器的精度.结果表明新的组合分类器能够取得比单一的分类器更高的分类精度.结果还显示出,两个分类器的独立性越强,组合分类器的效果越好.另外一个实验比较了新的组合分类器与和式规则组合分类器的分类精度,结果仍显示出了新方法的优越性.  相似文献   

7.
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover types in west Texas. Spectral measurements were collected with a ground-based hyperspectral spectroradiometer (spectral range 350–2500 nm) in December 2008 and April 2009. Spectral data consisting of 1698 spectral bands (400–1349, 1441–1789, 1991–2359 nm) were subjected to a support vector machine classification to differentiate saltcedar from other vegetative and non-vegetative classes. For both dates, a linear kernel model with a C value (error penalty) of 100 was found optimum for separating saltcedar from the other classes. It identified saltcedar with accuracies ranging from 95% to 100%. Findings support further exploration of hyperspectral remote sensing technology and SVM classifiers for differentiating saltcedar from other cover types.  相似文献   

8.
谷雨  徐英  郭宝峰 《测绘学报》2018,47(9):1238-1249
为提高高光谱图像的分类精度,提出了一种融合空谱特征和集成超限学习机的高光谱图像分类方法。首先结合每个像素邻域的光谱信息提取空谱特征向量;考虑到高光谱相邻波段信息具有一定的相关性,先对提取的特征向量进行平均分组,然后从每个区间随机选择若干个波段进行组合,采用具有快速学习能力的超限学习机训练分类器。为提高分类模型的泛化能力,基于集成学习思想,对提取的空谱特征进行多次抽样,训练得到多个弱分类器,最后采用投票表决法得到用于高光谱图像分类的强分类器。采用3个典型高光谱数据进行了分类试验,试验结果表明,提出的算法总体分类精度较优,尤其当训练样本数较少时能取得较高的分类精度。提出的算法具有可调参数少、训练速度快、分类精度高等优点,具有广阔的应用前景。  相似文献   

9.
高光谱遥感影像分类研究进展   总被引:4,自引:0,他引:4  
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。  相似文献   

10.
Accurate classification of heterogeneous land surfaces with homogeneous land cover classes is a challenging task as satellite images are characterized by a large number of features in the spectral and spatial domains. The identifying relevance of a feature or feature set is an important task for designing an effective classification scheme. Here, an ensemble of random forests (RF) classifiers is realized on the basis of relevance of features. Correlation‐based Feature Selection (CFS) was utilized to assess the relevance of a subset of features by studying the individual predictive ability of each feature along with the degree of redundancy between them. Predictability of RF was greatly improved by random selection of the relevant features in each of the splits. An investigation was carried out on different types of images from the Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and QuickBird sensors. It has been observed that the performance of the RF classifier was significantly improved while using the optimal set of relevant features compared with a few of the most advanced supervised classifiers such as maximum likelihood classifier (MLC), Navie Bayes, multi‐layer perception (MLP), support vector machine (SVM) and bagging.  相似文献   

11.
近年来红树林群落中物种结构简单、功能退化等环境问题日趋严重,为了及时准确掌握红树林群落的物种空间格局与分布,本文首先基于深圳福田红树林自然保护区无人机高光谱影像,利用归一化差值植被指数和归一化潮间红树林指数提取植被区域;然后在植被区域根据最佳指数法选取信息量大、波段相关性小的波段组合,分别采用基于像素支持向量机分类方法和面向对象影像分类方法对红树林物种进行分类。试验结果表明,基于像素支持向量机分类方法的总体精度为81.03%;利用面向对象影像分类方法的总体精度为85.58%。面向对象影像分类方法能有效去除椒盐噪声,充分利用对象光谱、形状及纹理信息,提供更准确的红树林分布信息。  相似文献   

12.
Tree species identification and forest type classification are critical for sustainable forest management and native forest conservation. Recent success in forest classification and tree species identification using LiDAR (light detection and ranging)-derived variables has been reported in many studies. However, there is still considerable scope for further improvement in classification accuracy. It has driven research into more efficient classifiers such as support vector machines (SVMs) to take maximum advantage of the information extracted from LiDAR data for potential increases in the accuracy of tree species classification. This study demonstrated the success of the SVMs for the identification of the Myrtle Beech (the dominant species of the Australian cool temperate rainforest in the study area) and adjacent tree species – notably, the Silver Wattle at individual tree level using LiDAR-derived structure and intensity variables. An overall accuracy of 92.8% was achieved from the SVM approach, showing significant advantages of the SVMs over the traditional classification methods such as linear discriminant analysis in terms of classification accuracy.  相似文献   

13.
In this study, we used Landsat-8 imagery to test object- and pixel-based image classification approaches in an urban fringe area. For object-based classification, we applied four machine learning classifiers: decision tree (DT), naive Bayes (NB), random trees (RT), and support vector machine (SVM). For pixel-based classification, we utilized the maximum likelihood classifier (MLC). Specifically, we explored the influence of repeated sampling on classification results with different training sample sizes. We found that (1) except the overall accuracy of NB, those of the other four classifiers increased as the training sample size increased; (2) repeated sampling had a significant effect on classification accuracy, especially for the DT and NB classifiers; and (3) SVM achieved the best classification accuracy. In addition, the performance of the object-based classifiers was superior to that of the pixel-based classifier. The results of this study can provide guidance on the training sample size and classifier selection.  相似文献   

14.
Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.  相似文献   

15.
杨娜  秦志远  张俊 《测绘科学》2013,38(1):47-50
基于支持向量机的无限集成学习方法(SVM-based IEL)是机器学习领域新兴起的一种集成学习方法。本文将SVM-based IEL引入遥感图像的分类领域,并同时将SVM、Bagging、AdaBoost和SVM-based IEL等方法应用于遥感图像分类。实验表明:Bagging方法可以提高遥感图像的分类精度,而AdaBoost却降低了遥感图像的分类精度;同时,与SVM、有限集成的学习方法相比,SVM-based IEL方法具有可以显著地提高遥感图像的分类精度、分类效率的优势。  相似文献   

16.
海底底质分类对于海洋资源开发与利用、海洋科学研究等多方面具有重要意义。目前,多波束探测是实现大范围海底底质分类的有效手段之一,通常基于多波束反向散射强度提取角度响应(AR)特征及反向散射图像特征进行底质分类。由于特征来源较单一,分类器结构简单,往往分类精度不高。为此,本文提出了一种基于深层卷积神经网络(CNN)的多波束海底底质分类方法。除反向散射强度特征外,还利用地形特征,将特征向量转换为波形图,再输入卷积神经网络进行训练和分类。试验对比不同特征组合以及BP网络、支持向量机(SVM)、K近邻(KNN)、随机森林(RF)4种常规分类器,本文模型算法总体分类精度达到94.86%,Kappa系数为0.93,精度具有明显优势,效率也比较高。表明该方法有效利用两种数据类型所蕴含的海底底质信息,充分发挥卷积神经网络权值共享、高效率等特点,实现高分辨率海底底质分类,可对海底底质分类研究提供参考。  相似文献   

17.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

18.
Species composition is one of the important measurable indices of alpha diversity and hence aligns with the measurable Essential Biodiversity Variables meant to fulfil the Aichi Biodiversity Targets by 2020. Graziers also seek for pasture fields with varied species composition for their livestock, but visual determination of the species composition is not practicable for graziers with large fields. Consequently, this study demonstrated the capability of Sentinel-1 Synthetic Aperture Radar (S1) and Sentinel-2 Multispectral Instrument (S2) to discriminate pasture fields with single-species composition, two-species composition and multi-species composition for a pastoral landscape in Australia. The study used K-Nearest Neighbours (KNN), Random Forest (RF) and Support Vector Machine (SVM) classifiers to evaluate the strengths of S1-alone and S2-alone features and the combination of these S1 and S2 features to discriminate the composition types. For the S1 experiment, KNN which was the reference classifier achieved an overall accuracy of 0.85 while RF and SVM produced 0.74 and 0.89, respectively. The S2 experiment produced accuracies higher than the S1 in that the overall performance of the KNN classifier was 0.87 while RF and SVM were 0.93 and 0.89, respectively. The combination of the S1 and S2 features elicited the highest accuracy estimates of the classifiers in that the KNN classifier recorded 0.89 while RF and SVM produced 0.96 and 0.93, respectively. In conclusion, the inclusion of S1 features improve the classifiers created with S2 features only.  相似文献   

19.
This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.  相似文献   

20.
With recent technological advances in remote sensing sensors and systems, very high-dimensional hyperspectral data are available for a better discrimination among different complex land-cover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, these high numbers of bands are usually highly correlated. Because of these complexities of hyperspectral data, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifier in these situations, Multiple Classifier Systems (MCS) may have better performance than single classifier. This paper presents a new method for classification of hyperspectral data based on a band clustering strategy through a multiple Support Vector Machine system. The proposed method uses the band grouping process based on a modified mutual information strategy to split data into few band groups. After the band grouping step, the proposed algorithm aims at benefiting from the capabilities of SVM as classification method. So, the proposed approach applies SVM on each band group that is produced in a previous step. Finally, Naive Bayes (NB) as a classifier fusion method combines decisions of SVM classifiers. Experimental results on two common hyperspectral data sets show that the proposed method improves the classification accuracy in comparison with the standard SVM on entire bands of data and feature selection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号