首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We report the results of monitoring the H2O maser in NGC 7538, which is associated with a star-forming region. The observations were carried out on the 22-meter telescope of the Pushchino Radio Astronomy Observatory. Two intervals of long-term variability of the integrated flux that reflect the cyclic activity of the maser have been distinguished (1981–1992 and 1993–2003); the data for the earlier activity cycle, 1981–1992, have been analyzed. The period of the long-time-scale variations is about 13–14 years. Flares of individual spectral features and of two groups of features with mean radial velocities of ?60 and ?46.6 km/s have been observed. The flares lasted from 0.3 to 1 year. The emission features observed during the 1984–1985 flare at radial velocities between ?62 and ?58 km/s probably form a spatially compact group of spots (<1015 cm) in NGC 7538 IRS 1. The triplet structure of the spectra can be traced. The observed anticorrelations and correlations of the fluxes of the triplet components suggest that the maser spots may be located either in a protoplanetary disk or in a high-velocity gaseous outflow.  相似文献   

2.
The results of a study of the maser source IRAS 18316?0602 in the H2O line at λ = 1.35 cm are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from June 2002 until March 2017. Three superflares were detected, in 2002, 2010, and 2016, with peak flux densities of >3400, 19 000, and 46 000 Jy, respectively. An analysis of these superflares is presented. The flares took place during periods of high maser activity in a narrow interval of radial velocities (40.5–42.5 km/s), and could be associated with the passage of a strong shock. The emission of three groups of features at radial velocities of about 41, 42, and 43 km/s dominated during themonitoring. The flare in 2016 was accompanied by a considerable increase in the flux densities of several features with velocities of 35–56 km/s.  相似文献   

3.
Results of monitoring of the H2O maser observed toward the infrared source IRAS 21078+5211 in the giant molecular cloud Cygnus OB7 are presented. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from April 1992 to March 2006. Five cycles of maser activity at various levels were observed. In the periods of highest activity, the spectrum of the H2O maser emission extended from ?43 to 12 km/s. During strong flares, the flux densities in some emission features reached nearly 600 Jy. The protostar has a small peculiar velocity with respect to the CO molecular cloud (~2 km/s). Based on the character of the radial-velocity variations and the tendency for the linewidth to increase with the flux, it is concluded that the medium is strongly fragmented and that there is a small-scale turbulent outflow of ga in the H2O maser region, which may impede the formation of an HII region. The asymmetric distribution of the maser components in V LSR, the difference in the average linewidths of the central and lateral clusters of components, and the fairly high radial velocities relative to the molecular cloud (especially during periods of the highest maser activity) suggest that the maser spots belong to different clusters and different structures of the source: a disk and bipolar outflow.  相似文献   

4.
Results of observations of the OH maser in W75N at 18 cm are reported. The observations were obtained on the radio telescope of the Nancay Radio Astronomy Observatory (France) from October 2007 to April 2009. The profiles of the Stokes parameters I, Q, U, and V in the 1665 and 1667 MHz OH lines have been measured. A technique taking into account instrumental polarization has been developed and applied. The emission in the OH lines is strongly polarized both linearly and circularly. The degree of polarization of some emission features reaches almost 100%. There were two flares of the maser emission in 2008–2009. During a flare at a radial velocity of +5.5 km/s, a Zeeman pattern was detected in the 1667 MHz line. The measured intensity of the line-of-sight component of the magnetic field was −1.1 mG, which corresponds to the field being directed away from the observer. The maser flares and the associated enhancement of the magnetic field could be associated with the compression of gas at a shock front.  相似文献   

5.
The results of a study of H2O and OH maser emission in the complex region of active star formation W75 N are presented. Observations were obtained using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) and the Nan3ay radio telescope (France). Flaring H2O maser features may be identified with maser spots associated with the sources VLA 1 and VLA 2. Themain H2O flares occurred in VLA 1. The flare emission was associated with either maser clusters having closely spaced radial velocities and sizes up to ~2 AU or individual features. The maser emission is generated in a medium where turbulence on various scales is present. Analysis of the line shapes during flare maxima does not indicate the presence of the simplest structures—homogeneous maser condensations. Strong variability of the OH maser emission was observed. Zeeman splitting of the 1665-MHz line was detected for several features of the same cluster at a radial velocity of +5.5 km/s. The mean line-of-sight magnetic field in this cluster is ~0.5 mG, directed away from the observer. Flares of the OH masers may be due to gas compression at a shock or MHD wave front.  相似文献   

6.
The fine structure of the region of formation of a protostar in the dense molecular cloud OMC-1 of the Orion Nebula was studied during a period of enhanced activity in 1998–1999, with an angular resolution of 50 μas and a velocity resolution of Δv = 0.053 km/s. Inclusions of ice granules in the bipolar outflow were detected and identified. The velocity of the outflow reaches ∼50 km/s, while that of the granules is <5 km/s. The outflow sublimates and accelerates H2O molecules, thereby exciting the maser emission. As a result, their relative velocity and, accordingly, pumping level decrease. The maser emission of the outflow is observed at distances out to ρ < 3 mas, or <1.5 AU. However, in the distant part (ρ > 5 mas), bullets corresponding to maser emission excited by the outflow in the surrounding medium are observed. The emission is amplified by the external medium at a velocity of v LSR = 7.65 km/s in the bandwidth Δ v ≈ 0.5 km/s. The sources of pumping are clusters of infrared sources. The bipolar outflow is inclined at a small angle to the plane of the sky. The acceleration of the maser inclusions also increases the longitudinal component of the velocity, reducing amplification of the emission. The brightness temperature of the components decreases: T b ρ −0.8±0.1. The activity terminates with the exponential decline of the maser emission, F ∼ exp(−0.5t 2); in the saturated mode this is determined by a decrease in the optical depth, τt 2. The material of the surrounding space, including the ice granules, is drawn into the disk, moves along spirals toward the nozzle, and is ejected as a highly collimated bipolar flow. The density of material in the outflow exceeds the surrounding density by three to four orders of magnitude. The accretion of the surrounding material and ejection of the bipolar outflow are a unified process accompanying the initial phase of formation of protostars. The counter motion of material at the center stimulates the formation of a central massive object, whose gravitational field accelerates the process and stabilizes the system. The ratio of the durations of periods of high and low activity is determined by the rates of ejection and disk replenishment, and is ∼1:10. The rotating bipolar flow is self-focused.  相似文献   

7.
Results of observations of the H2O maser in S269 carried out from October 1980 to February 2001 on the 22-m telescope (RT-22) of the Pushchino Radio Astronomy Observatory are presented. During the monitoring of S269, variability of the integrated flux of the maser emission with a cyclic character and an average period of 5.7 years was observed. This may be connected with cyclic activity of the central star during its formation. Emission at radial velocities of 4–7 km/s was detected. Thus, the H2O maser emission in S269 extends from 4 to 22 km/s, and is concentrated in three radial-velocity intervals: 4–7, 11–14, and 14–22 km/s. In some time intervals, the main group of emission features (14–22 km/s) had a triplet structure. The central velocity of the total spectrum is close to the velocity of the CO molecular cloud and HII region, differing from it by an amount that is within the probable dispersion of the turbulent gas velocities in the core of the CO molecular cloud. A radial-velocity drift of the component at V LSR≈20 km/s with a period of ≈26 years has been detected. This drift is likely due to turbulent (vortical) motions of material.  相似文献   

8.
The results of observations of the S128 H2O maser carried out from February 1995 to March 2001 on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory are presented. Two activity cycles of the H2O maser with a period of about 10 years were observed during the total monitoring interval (1981–2001). This may be connected either with cyclic activity of the central star in S128 during its formation or with the influence on the H2O masering region of shocks arising near an ionization front at the interface of two colliding CO clouds. The emission at radial velocities from ?73 to ?70 km/s consists of four emission features. The emission feature at ?71.8 km/s exhibits a flux dependence on linewidth that is typical of an unsaturated maser.  相似文献   

9.
We present the results of monitoring the H2O masers in the IR sources IRAS 18265-1517 and IRAS 18277-1516 associated with the cool molecular cloud L 379, which contains high-velocity bipolar molecular jets. The sources were observed in the 1.35 cm H2O line using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) during 1991–2004. We detected H2O maser emission from IRAS 18265-1517 at radial velocities of 17.8 and 18.4 km/s, virtually coincident with the velocity of the molecular cloud derived from CO-line observations (18.4 km/s). The maser emission towards the other source, IRAS 18277-1516, was at higher velocities than the central velocity of the CO molecular cloud. The H2O maser spots are most likely associated with a redshifted region of CO emission. Cyclic variability of the integrated H2O maser emission that may be related to cyclic activity of the central star was detected for IRAS 18277-1516. The strongest and most long-lived component (VLSR ≈ 20.6 km/s) displays a radial-velocity drift, which could be due to deceleration of a dense clump of matter (maser condensation) in the circumstellar medium during the descending branch of a strong flare. We found numerous emission features for both IRAS 18265-1517 and IRAS 18277-1516, providing evidence for fragmentation of the medium surrounding their central objects.  相似文献   

10.
Observations at 44 GHz in the 70−61 A + methanol line have been carried out on the 20-m telescope of the Onsala Space Observatory (Sweden) in the directions of the poorly studied region G27.4–0.2 and of several supernova remnants, at the coordinates of the OH(1720) maser satellite emission, with the aim of searching for Class I methanol maser emission in these sources. The region G27.4–0.2 has beenmapped, and contains maser sources and two supernova remnants with similar coordinates and radial velocities, which may accelerate condensation of the ambient gas-dust medium. This may play a role in enhancing the probability of methanol formation and maser emission. This is the first detection of 44 GHz maser emission in this source, and this maser is among the 10% of the strongest Class I methanol masers, within the uncertainties in the integrated flux (of a total of 198 currently knownmasers). A 27′ × 27′ region around the maser has been mapped at 44 GHz in steps of 1′. The 44-GHz emission forms only within the previously known maser region. Further studies in water lines are needed to estimate the influence of shocks from supernovae. No 44-GHz Class I methanol maser emission was detected at the 3σ level at the coordinates of the OH(1720) satellite emission in six supernova remnants; i.e., the presence of OH(1720) emission is not a sufficient condition for the detection of Class I methanol masers.  相似文献   

11.
We present observations of H2O maser emission from the complex region of active star formation Sgr B2 performed in 2005–2012. The observations were carried out with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. Seven flares with flux densities higher than 1000 Jy were detected. The flares occurred in all three main sites of star formation in Sgr B2, N,M, and S. The highest peak flux densities were 3200 Jy (60.9 km/s), 2350 Jy (69.4 km/s), and 7300 Jy (69.3 km/s) in N, M, and S, respectively. This last flare was the strongest during our monitoring campaign from 1982 to 2012, both in S and in the entire Sgr B2 complex. Possible associations of the flares were determined. High-velocity, short-lived emission was detected at 124–128 km/s. Emission at 127 km/s with a flux density of 23 Jy is associated with region M. Emission at 80.6 and 84.6 km/s, at radial velocities higher than those observed previously, was detected in region S.  相似文献   

12.
The results of observations of the H2O and OH maser sources toward the region of W33C (G12.8-0.2) are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in the 1.35-cm water-vapor line and on the Large Radio Telescope at Nan?ay (France), in the main (1665 and 1667 MHz) and satellite (1612 and 1720 MHz) OH lines. Multiple, strongly variable, short-lived H2O emission features were detected in a broad interval of radial velocities, from ?7 to 55 km/s. OH maser emission in the 1667-MHz line was detected at velocities of 35?C41 km/s. The Stokes parameters of the maser emission in the main OH lines 1665 and 1667 MHz were measured. Zeeman splitting was detected in the 1665-MHz line at 33.4 and 39.4 km/s, and in the 1667 MHz line only at 39.4 km/s. The magnetic-field intensity was estimated. Appreciable variability of the Zeeman splitting components was observed at 39 and 39.8 km/s in both main lines. The extended spectrum and fast variability of the H2O maser emission, together with the variability of the Zeeman-splitting components in the main OH lines, may indicate a composite clumpy structure of the molecular cloud and the presence of large-scale rotation, bipolar outflows, and turbulent motions of material in this cloud.  相似文献   

13.
Results of monitoring of H2O maser in the infrared source IRAS 20126+4104, which is associated with a cool molecular cloud, are presented. The observations were carried out on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia) between June 1991 and January 2006. The spectrum of the H2O maser emission extends from ? 16.7 to 4.8 km/s and splits into separate groups of emission features. Cyclic variations of the integrated maser flux with a period from 3.4 to 5.5 years were detected, together with strong flares of up to 220 Jy in individual emission features. It is shown that large linewidths in periods of high maser activity are due to small-scale turbulent motions of the material. An expanding envelope around a young star is accepted as a model for the source. The protostar has a small peculiar velocity with respect to the molecular cloud (~2 km/s). Individual emission features form organized structures, including multi-link chains.  相似文献   

14.
We report the results of a study of fast variations of the H2O maser emission toward NGC 7538 IRS 1, which is associated with a star-forming region. The study is based on monitoring data in the 1.35 cm line obtained in 1996–2003 on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia). Periodic flux variations of four long-lived emission features with an average period of about 0.9 year have been detected. The flux variations of these features are correlated, suggesting that the detected variability is a consequence of pulsation of, e.g., stellar wind from the protostar in NGC 7538 IRS 1, with a period of about 0.9 year (0.87 ± 0.03 year). These pulsations are superimposed on long-term variability of the integrated maser emission with a period of 13 years.  相似文献   

15.
Results of monitoring the H2O and OH masers in W44C, located near the cometary HII region G34.3+0.15, are reported. Observations in the water-vapor line at λ = 1.35 cm were carried out on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from November 1979 to March 2011, and in the hydroxyl lines at λ = 18 cm on the large Nançay radio telescope (France). Activity maxima and minima of the water maser alternated. The average period of the activity is ~ 14 years, consistent with results obtained earlier for a number of other sources associated with regions of active star formation. In periods of enhanced maser activity, two series of strong H2O maser flares were observed, which were related to two different clusters of maser spots located at the front of a shock at the periphery of the ultracompact region UH II. These series of flares may be associated with cyclic activity of the protostellar object in UH II. In the remaining time intervals, there were mainly short-lived flares of single features. The Stokes parameters for the observations in the hydroxyl lines were determined. Zeeman splitting was observed in the profile of the 1667 MHz OH main line at a velocity of 58.5 km/s, and was used to estimate the intensity of the line-of-sight component of the magnetic field (1.2 mG).  相似文献   

16.
Strong flares of the H2O maser emission in sources associated with active star-forming regions are analyzed. The main characteristics of 13 flares in nine sources selected using special criteria are presented. The observed phenomena are explained as flares in double emission features. The approach of two emission features in the spectrum with increasing flux and their recession with decreasing flux is explained using a model with two physically related clumps of material that are partially superposed in the line of sight. Calculations have shown that, in this type of model, exponential amplification (unsaturated maser emission) in the overlapping parts of the clumps can produce the observed line narrowing with increasing flux. In most cases, the maser spots are inhomogeneous. During the evolution of some flares, the maser condensations may split into separate fragments. A less catastrophic evolutionary path may be an initial stage of formation of chainlike structures, which are fairly widespread in envelopes around ultracompact HII regions.  相似文献   

17.
Results of monitoring hydroxyl and water masers in the star-forming region S128 are presented. A large number of emission features in the 1665 MHz OH line have been detected in both circular polarizations. In spite of the strong variability of the flux density in the main 1665 MHz line, the radial velocities of the features remained constant. Zeeman splitting of the 1720MHz line equal to 0.86 km/s was detected, corresponding to a longitudinal magnetic field of 3.6 mG. The variability of the H2O emission has a cyclic character with a quasi-period of 4–14 yrs. The evolution of individual features confirms that the H2O sources A and B are associated with an ionization front between two colliding CO clouds, and shows that the activity was transferred from maser B to maser A in 1999–2001.  相似文献   

18.
Results of observations of circumstellar OH masers in lines with wavelengths near 18 cm are reported. The observations were carried out on the radio telescope of the Nan cay Radio Astronomy Observatory (France). In 2007–2009, 70 late-type stars were observed (including Mira and semi-regular variables). For 53 of these, emission was detected in at least one of three OH lines (1612, 1665, or 1667 MHz). Circular and linear polarization of the maser emission was measured, yielding all four Stokes parameters. Polarized emission features were detected in the OH line spectra of 41 stars. A summary of all the observations is given. The results obtained for T Lep, R LMi, and R Crt are discussed. Emission in the 1665 and 1667 MHz OH lines was detected in T Lep for the first time. Features probably due to Zeeman splitting were detected in the OH line profiles of all three stars. Estimates of the magnetic-field strengths in the maser sources were obtained (0.46–2.32 mG). Variability of the polarization characteristics of the maser emission of the stars on time intervals of several months was found.  相似文献   

19.
The structure and kinematics of the ISM in an extended vicinity of the star WR 139 is analyzed using the results of original Hα interferometric observations together with radio and infrared data. A CO cavity with a size of up to 40′ has been detected around the star at velocities of V LSR ∼ 2.5–10 km/s; the cavity is bounded to the North by a shell radiating in the optical. Ionized hydrogen emits at the systematic velocities V LSR ∼ 6–14 km/s toward the CO cavity, and at V LSR ≃ 4–11 km/s toward the shell. High-velocity motions of ionized hydrogen inside the cavity testify to the probable expansion of gas that has been swept out by the stellar wind of WR 139 at velocities of up to 60–80 km/s.  相似文献   

20.
The results of monitoring the water-vapor maser at λ=1.35 cm in Sgr B2 are presented. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) in 1982–1992. A strong flare of the maser radiation associated with Sgr B2(N) was detected in this period. The absolute strength of this flare is comparable to the megamaser emission observed in Orion in 1979–1987. The flare is probably due to a strengthening of the flow of material from the rotating accretion disk, in which are embedded the three ultracompact HII regions K1, K2, and K3. A subsequent excitation of emission features at increasingly higher radial velocities was observed, associated with a gradient of VLSR along the direction of the outflow. The large width of the lines (>0.86 km/s) could reflect a complex structure for the maser spots, such as a chain or filamentary structure, as has been observed in Orion and S140.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号