首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Soret effect on MHD free-convective and mass-transfer flow of an incompressible, viscous, and electrically-conducting fluid, past a moving vertical infinite plate is studied. The flow is assumed to be at small Reynolds numbers so that the induced magnetic field is neglected. The problem is solved with the help of the Laplace transform method for two different values of the dimensionless functionf(t) signifying two different cases, e.g., (i) when the boundary surface, the flat plate, is impulsively started, moving in its own plane (I.S.P.) and (ii) when it is uniformly accelerated (U.A.P.). The effects on the velocity field as well as on the skin-friction of the various dimensionless parameters occurring into the problem, especially the magnetic parameterM and Soret number So, are discussed with the help of graphs.  相似文献   

2.
An exact analysis of the unsteady free and forced convection flow of an incompressible viscous fluid is presented in the presence of thermal diffusion effect. The Laplace transform technique is used to obtain the expressions for velocity, leading edge effects, and skin-friction. During the course of the discussion, the effects ofS (thermal diffusion parameter), Pr (Prandtl number), andt (time parameter) on velocity, leading edge, and skin-friction are extensively discussed.  相似文献   

3.
The effects of free convection on the accelerated flow of a viscous, incompressible and electrically conducting fluid (e.g. of a stellar atmosphere) past a vertical, infinite, porous limiting surface (e.g. of a star) in the presence of a transverse magnetic field, is considered. The magnetic Reynolds number of the flow is taken to be small enough, so that the induced magnetic field is negligible. Expressions for velocity and skin-friction are obtained by using Laplace transform, when the Prandtl number is equal to one (P=1). Graphs showing variations of velocity and skin-friction, for different values ofG (Grashof number) andM (magnetic parameter) are plotted, and the results of them are discussed.  相似文献   

4.
An analysis of a two-dimensional steady-free convection and mass transfer flow of an incompressible, viscous, and electrically conductive non-Newtonian fluid through a porous medium bounded by a vertical infinite limiting surface (plane wall) has been presented in the presence of a transverse magnetic field. Approximate solutions to the coupled nonlinear equations governing the flow are derived and expression for the velocity, temperature, concentration, the rate of heat transfer, and the skin-friction are derived. Effects of Gr (Grashof number), Gm (modified Grashof number),M * (non-Newtonian parameter),N (magnetic parameter), and permeabilityK of the porous medium on the velocity, the skin-friction and the rate of heat transfer are discussed when the surface is subjected to a constant suction velocity.  相似文献   

5.
The effect of a uniform transverse magnetic field on the free-convection and mass-transform flow of an electrically-conducting fluid past an infinite vertical plate for uniformly accelerated motion of the plate through a porous medium is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expression for the velocity field and skin-friction are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

6.
The effect of rotation on unsteady free-convective started vertical plate is considered. It is assumed that the induced magnetic field is negligible compared to the applied magnetic field, which is fixed with the moving plate. Mathematical expressions for velocity and skin-friction are obtained by the Laplace transform technique. The profiles for velocity components are shown graphically with the effects of the rotation parameter, magnetic parameter and Grashof number. The numerical values of skin-friction components are given in tabalar form for different values of the parameters.  相似文献   

7.
An exact analysis of the unsteady free and forced convection flow of an incompressible viscous fluid past a porous plate has been presented in presence of a constant heat source. A solution has been derived by Laplace-transform technique. Velocity profiles, skin-friction and leading edge effects have been obtained. During the course of the discussion, the effects ofS (heat source parameter), (suction parameter) on velocity, skin-friction and leading edge effect have been extensively discussed with the help of graphs and the table.  相似文献   

8.
An analysis of a two-dimensional unsteady free convective flow of an incompressible viscous fluid past an infinite vertical porous plate has been carried out under the following conditions: (i) constant suction, (ii) the plate temperature oscillating in time about a constant non-zero mean, (iii) presence of the temperature-dependent sources in the fluid. Approximate solutions have been derived for the mean velocity and temperature fields, the transient velocity and temperature fields, the amplitude and the phase of the skin-friction and the rate of heat transfer. It is shown that an increase inS (the source-strength), leads to an increase in the value of |B| (the amplitude of the skin-friction) and |Q| (the amplitude of the rate of heat transfer), in case of air, but in case of water |B| and |Q| decrease.  相似文献   

9.
A numerical solution for unsteady hydromagnetic free-convection currents of a viscous incompressible and electrically conducting fluid induced by a vertical moving infinite plate is considered for constant heat flux at the plate. Velocity and skin-friction have been worked out for various values of the parameters occuring into the problem. It is found that magnetic parameter has a retarding effect on the velocity of air and water, while skin-friction increases with it.  相似文献   

10.
The free-convection flow of an incompressible viscous fluid past an infinite, vertical plate for impulsive as well as uniformly accelerated motion of the plate is discussed when the plate temperatuve varies as the square root of time. The Laplace transform technique is used to obtain the expressions for velocity and skin-friction. The influence of the various parameters, entering into problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

11.
The unsteady flow of an incompressible electrically-conducting and elasto-viscous fluid (Walter's liquidB), filling the semi-infinite space, in contact with an infinite non-conducting plate, in a rotating medium and in the presence of a transverse magnetic field is investigated. An arbitrary time-dependent forcing effect on the motion of the plate is considered and the plate and fluid rotate uniformly as a rigid body. The solution of the problem is obtained with the help of the Laplace transform technique and the analytical expressions for the velocity field as well as for the skin-friction are given.  相似文献   

12.
Unsteady two-dimensional flow of a viscous incompressible and electrical-conducting fluid through a porous medium bounded by two infinite parallel plates under the action of a transverse magnetic field is presented when there is time-varying suction at the plates. The lower plate is at rest while the upper plate is oscillating in its own plane about a constant mean velocity. Expressions for the velocity, fluctuating parts of the velocity, amplitude, and phase of the skin-friction are obtained. The flow phenomenon has been characterized by the parametersK (permeability of the porous medium),N(magnetic parameter) (frequency parameter), andA(variable suction parameter) and the role of these parameters on the flow characteristics has been studied.  相似文献   

13.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically conducting fluid past an exponentially accelerated infinite vertical plate is analysed for both cases, when the magnetic lines of force are fixed relative to the fluid and the plate, respectively. The Laplace transform method is used to obtain the expressions for velocity and skin-friction. The effect of a magnetic parameter is to decrease the velocity of water when the magnetic field is fixed to the fluid, while it increases the velocity field when the magnetic lines of force are fixed relative to the plate.  相似文献   

14.
Effect of Hall current on the hydromagnetic free-convection flow of an electrically-conducting viscous incompressible fluid past an impulsively accelerated vertical porous plate in the presence of a uniform transverse magnetic field subjected to a constant transpiration velocity is analyzed for the case of small magnetic Reynolds number. Numberical solutions are obtained for the axial and transverse components of the velocity as well as the skin-friction by employing the Crank-Nicolson implicit finite-difference method for all probable values of the Prandtl number. The results are discussed with the effects of the Grashof number Gr, the transpiration velocity parameter , the Hall current parameterm, and the magnetic field parameterM for the Prandtl number Pr=0.71 which represents air at 20° C.  相似文献   

15.
There have been considered the effects of external temperature-dependent heat sources and mass transfer on free convection flow of an electrically conducting viscous fluid past an impulsively starting infinite vertical limited surface in presence of a transverse magnetic field as considered. Solutions for the velocity and skin-friction, in closed form are obtained by using the Laplace transform technique and the results obtained for various values of the parametersS c (Schmidt number),M (Hartmann number), andS (Strength a Source or Sink) are given in graphical form. The paper is concluded with a discussion on the obtained results.  相似文献   

16.
The effect of large suction on laminar hydromagnetic boundary-layer flows is investigated by employing the perturbation method. The resulting equations have been solved by analytical method. It is found that an increase in magnetic parameter leads to an increase in velocity, skin-friction and rate of heat transfer and a fall in temperature.  相似文献   

17.
The free-convection flow of an incompressible and viscous fluid past an exponentially accelerated infinite vertical plate is analysed. The Laplace transform method is used to obtain the expressions for velocity and skin-friction. The effect of various parameters, occuring into the problem, is discussed with the help of graphs and table.  相似文献   

18.
Hall effects on the MHD flow of an incompressible, electrically-conducting viscous fluid past an impulsively started infinite vertical porous plate has been analysed for the case of small magnetic Reynolds number. Exact solutions have been obtained for the axial and the transverse components of the velocity and the skin-friction by defining a complex velocity with the help of the Laplace transform technique. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin-friction are tabulated for different values of the dimensionless parameters occurring into the problem.  相似文献   

19.
An analysis of Rayleigh's problem (also Stokes's problem) for the flow of a viscous fluid (e.g. of a stellar atmosphere) past an impulsively started infinite, vertical porous limiting surface (e.g. of a star) with constant suction, when the free stream velocity oscillates in time about a constant mean, has been carried out. On solving the coupled non-linear equations in approximate way, expressions for the mean velocity, the mean temperature, the mean skin-friction and the mean rate of heat transfer, expressed in terms of Nusselt number, are obtained. The effects of Grashof numberG, Eckert numberE and Prandtl numberP, on these quantities, is discussed for the cases of an externally heating and cooling of the limiting surface, by the free convection currents, and the variations of them are shown graphically.  相似文献   

20.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically-conducting fluid past an infinite, vertical, porous plate for both classes of impulsive as well as uniformly-accelerated motion of the plate is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expressions for the velocity field and skin friction for both cases are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed with the help of graphs and tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号