首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual Interpretation of Landsat Imagery (TM-FCC) on 1∶250,000 scale covering 2410 sq km in a part of Mahandi Delta, Kataka district, Orissa was carried out for delineating the physiographic units. The major physiographic units identified and delineated were ‘Delta plain’ and ‘Coastal plain’. These units were further subdivided on the basis of image elements. The abstraction level attained was ‘Family’ based on Soil Taxonomy. The soils of the beach were classified as Typic Ustipsamments; old coastal plain as fine, Typic Haplaquept and coarse loamy Aquic Ustifluvent; Tidal flat as fine Typic Haplaquept and fine loamy Aquic Ustifluvent; mud flat as fine Typic Haplaquept; Levee-plain complex as Typic Ustipsamment and fine loamy Typic Ustorthent; old Delta plain as fine Udic Ustochrept and Aeric Haplaquept and recent delta plain as fine loamy and coarse loamy Typic Ustorthent. The soils are mixed in mineralogy and Isohyperthermic in temperature regime.  相似文献   

2.
Remote sensing techniques have been employed to identify and delineate soils in a part of Dibrugarh district of Assam. Landsat-4 MSS data in the form of FCC (4, 5, 7) were interpreted visually for physiographic analysis in conjunction with Survey of India topographic maps. Ground data were translated in terms of soils using composite interpretation map as base. The abstraction level attained was Families of Soil Taxonomy. Four major physiographic units were delineated, viz. active flood plain, recent alluvial plain, gently undulating old alluvial plain and gently sloping to undulating piedmont plain. Dominant soils identified are: coarse loamy Aeric Fluvaquents and fine loamy Typic Udifluvents in active flood plain; fine Typic Haplaquepts and fine loamy Aquic Dystrochrepts in recent alluvial plain; fine loamy Umbric Dystrochrepts and fine Ultic Hapludalfs in old alluvial plain; coarse loamy Typic Udorthents and fine Mollic Hapludalfs in piedmont plain.  相似文献   

3.
To understand the nature of land degradation and factors responsible for it, investigations were carried out in Etah district with an area of 4.45 lakh hectares. For identification of soil/land degradation problems, multidate Landsat, TM spectral bands and FCC were used. It is observed that salt-affected soils are sharply depicted by light and dark gray mixed tone on band 3, while they are not clear on band 4. Flood plain and waterlogged soils are clearly observed on band 4. Band 6 (10.3 – 12.5 µm) helps in separation of broad zones of coarse and fine-textured soils, active flood plain of rivers, and eroded and gullied lands. The confusion between coarse-textured droughty soils and salt-affected areas in TM FCC (2, 3, 4) could be eliminated by use of band-6 data in combination with FCC. For delineation of problematic areas, two approaches were followed viz. (i) physiographic approach, and (ii) direct approach. In the physiographic approach landscape map associated with image characteristics was prepared. Further the image interpretation units were interpreted for land degradation hazards. With this approach physiography and soil relationship and the degradation problems vis-a-vis soil units could be established and ameliorative measures as per soil condition can be suggested. In direct approach, the problematic areas as per predetermined key were demarcated. Out of 4.45 lakh ha of the area, 1.99 lakh ha is affected by various soil degradation problems, like droughty soils, flooding hazard and salinity and alkalinity which cover 22.1%, 50.0% and 27.9%, respectively. To study the distribution of a salt-affected lands, major physiographic boundaries were superimposed over the land degradation map prepared by direct approach. It is observed that 81.5% of the salt-affected areas lie in the old alluvial plain while 18.5% is in recent flood plain.  相似文献   

4.
Multispectral and multitemporal landsat-FCC of 1:250,000 and transparancies on 1:1000,000 scales of bands 4, 5, 6 and 7 were interepreted to identify and delineate the areas under varying intensities of dunal activity in the western part of Haryana State comprising an area of 12610 sq. km. CCTs of some representative areas were also interpreted on the Multispectral Interactive Data Analysis System. Field checks were made to correlate the laboratory interpretation and the ground truth. The study areas were differentiated into the following units: (1) Sandy desert zone: No cultivation on dune tops except some shrubs, (2) Aeolian cover with sandy hummocks: low intensity cultivation, (3) Plain with aeolian cover: moderately cultivated, (4) Plain: Moderately to intensively cultivated. The major soils in association were Typic Torripsamments/Ustipsamments/Ustorthents/Ustifluvents/Calciorthids and Natric Camborthids.  相似文献   

5.
Visual interpretation of IRS-L1SS-II (January, 1995) FCC (1:50,000 scale) of spectral bands 2, 3 and 4 was carried out for the identification and mapping of major physiographic units in an arid watershed of Jodhpur district (Rajasthan). Based on image characteristics and field traverses, seven major physiographic units identified are (1) hills (2) pediments, flat to undulating (3) buried pediments, moderately deep to deep, coarse textured (4) buried pediment, shallow to moderately deep and deep, medium to fine textured, saline (5) older alluvial plains, deep and very deep, coarse textured (6) younger alluvial plains, deep to very deep, very coarse textured and (7) dune complexes. Based on physiographicvariatton and soil or site characteristics such as texture, depth, slope, erosion and underneath substrata, 41 soil mapping units were identified and mapped. Final physiography, soil, slope, drainage and landuse maps were prepared on 1:5,000 scale. Taxonomically, the soils of the watershed were classified as Para-Lithic Torriorthents, coarse-loamy, Lithic/Typic Haplocambids, fine-loamy, Lithic/Typic Haplosalids and Typic Torrifluvents and Typic Torripsamments. Land suitability for various mapping units in the watershed have been assessed on the basis of soil physico-chemical characteristics.  相似文献   

6.
Soil survey of Hissar district (Haryana) covering total area of 6,331 sq. kms. was carried out using the aerial photographs of 1 : 25,000 scale. A detailed physiographic legend was prepared and boundaries were confirmed in relation to soil. Soil-landscape relationship was established during the course of study. Four major physiographic units were identified in the area : i. e. i) Aeolian plain, ii) Alluvial plain, iii) Drishdawati flood plain, iv) Ghaggar flood plain. Each of the major unit was sub-divided on the basis of photo elements, tone, texture, erosion, parcelling etc. The soils of the sand dunes/ Bars are classified as Typic Torripsamments/Ustipsamments; plain-Typic, Camborthids/Calciorthids/Ustrochrepts; basins-Aquic Ustochrepts and salt affected plain-Aquic Natrustalfs.  相似文献   

7.
Soil resource characterization of Dhamni micro-watershed in Chandrapur district of Maharashtra was carried out using IRS-1D LISS-III data in conjunction with field survey and ancillary data. The study indicates that nearly 84.2 per cent of the total geographical area of the watershed is under cultivation. Forest (mainly degraded) occupy only 4.5 per cent area Whereas wasteland with scrub cover 9.4 per cent area of the watershed. Nine soil series were tentatively identified and mapped as soil series association in to five mapping units. These soils belong to order Inceptisol, Vertisol and Mollisol. Except the soils of wasteland with scrub, other soils are moderately suitable for pigeonpea and soybean and have average to good productivity.  相似文献   

8.
Lateritic soils of Mathamangalam, Kannur District, located in midlands of Kerala, were morphologically studied, characterized, classified and mapped at 1:50,000 scale using remote sensing techniques. The terrain of the study area being hilly and covered with perennial vegetation, soil-landscape model was applied. For this purpose physiographic information was inferred from SRTM DEM, Resourcesat-1 LISS-III satellite image and topographical maps. The interpreted units were validated in the field and characterized through soil-site examination, soil profile study and soil analysis. The study indicated that the lateritic soils of midlands of Kerala vary in physical, chemical and morphological properties in relation to micro-relief. Soils developed on moderately steeply sloping side slopes (15–30% slope) are deep, moderately well drained with gravelly clay textured, where as the soils developed on moderately slopping side slope (10–15% slope) are very deep and well drained. The soils of valleys are very deep, moderately well drained with fine texture. Very gently sloping (1–3%) laterite plateau tops have extremely shallow soils associated with rock outcrops. These soils mainly belong to Order Ultisols followed by Inceptisols and Entisols. These were further grouped up to Family and Series level by tentatively establishing seven soil series. This study helps in understanding the behaviour of lateritic soils of midlands of Kerala, which can be useful in generation of interpretative maps and in optimizing the land use.  相似文献   

9.
The extent of salt-affected soils in Punjab based on the 1984 Landsat-MSS data (FCC) has been investigated. The area of salt-affected soils has decreased from 0.699 million ha in 1972 to 0.488 million ha in 1984. The 1972 extent of salt-affected soils is based on the available maps and interpretation of ERTS pictures. The morphological, physical, chemical and minerological characteristics of salt-affected soils in Punjab are described. These soils are charaterised by high pH, ESP and EC but lack columnar or prismatic structure. The highest salt accumulation is observed at the surface and decreases with depth. The only sodium containing silicate mineral identified in these soils is albite. The development of salt-affected soils in Punjab is intimately connected with fluctuation of ground water. These soils have been formed by a combination of topographic, climatic, hydrological and geochemical conditions conducive for the accumulation of brackish waters at or near soil surface.  相似文献   

10.
In the present study, soil loss in Nagpur district of Maharashtra is predicted employing USLE method and adopting integrated analysis in GIS to prioritise the tahsils for soil conservation and for delineation of suitable conservation units. Remote sensing techniques are applied to delineate the land cover of the district and to arrive at annual cover factors. Results indicate that potential soil loss of very slight to slight (>5–10 tons/ha/year) exist in the valleys in north western, northern and in the plains of central and eastern parts of the district. Moderate to moderately severe erosion rates (10 to 20 tones/ha/year) is noticed in the southeastern and some central parts. Severe, very severe and extremely severe erosion types (20 to 80 tons/ha/year) are noticed in the northern, western, southwestern and southern parts of the district. The average soil loss is estimated to be 23.1 and 15.5 tons/ha/yr under potential and actual conditions respectively. Slight, moderate, moderately severe and extremely severe potential erosion covering about 41 per cent area of the district is reduced to negligible and very slight rates of actual erosion under the influence of present land cover leading to a reduction of 7421.2 tones of potential soil loss. Priority rating of the tahsils is evaluated from the area weighted mean quantum of soil loss. Multi-criteria overlay analysis with the parameters of soil erosion, slope, soil depth, land cover and surface texture with rating for the constituent classes has resulted in delineation of nine conservation units. Appropriate agronomic and mechanical practices are suggested in the identified units for minimizing the erosion hazard.  相似文献   

11.
黄河三角洲盐碱地遥感调查研究   总被引:85,自引:1,他引:85  
土壤盐渍化是干旱、半干旱农业的主要的土地退化问题,有关盐碱地的性质、范围、面积、地理分布及盐渍程度等方面的实时、可靠的信息,对治理盐碱地防止其进一步退化和进行农业可持续发展规划至关重要,提出运用Landsat TM遥感数据来获取这些信息。基于地物光谱特征、野外调查建立的地物与影像之间的关系以及土壤和地下水监测数据的辅助,将常规监督分类法和改进的图像分类法两种方法相结合,提取了不同盐渍程度的盐碱地,即光板地14477.67hm^2,重度盐碱地52086.33hm^2,中度盐碱地86699.61hm^2,轻度盐碱地215001.7hm^2,占黄河三角洲总面积的近二分之一(47.4%),除此之外,水体,滩涂,非盐碱地等也作了区分。  相似文献   

12.
Development of salt-affected soils in the irrigated lands of arid and semi-arid region is major cause of land degradation. Hyperion hyperspectral remote sensing data (EO-1) was used in the present study for characterization and mapping of salt-affected soils in a part of irrigation command area of Indo-Gangetic alluvial plains. Linear spectral mixture analysis approach was used to map various categories of salt affected soils represented by spectral endmembers of slightly, moderately and highly salt-affected soils. These endmembers were related to surface expression of various categories of salt-affected soils in the area. The endmembers were selected by performing minimum noise fraction (MNF) transformation and pixel purity index (PPI) on Hyperion (EO-1) data with reference to high resolution LISS IV data and field data. The results showed that various severity classes of salt-affected soils could be reliably mapped using linear spectral unmixing analysis. A low RMSE value (0.0193) over the image was obtained that revealed a good fit of the model in identification and classification of endmembers of various severities of salt affected soils. The overall classification accuracies for slight, moderate and highly salt-affected soils were estimated of 78.57, 79.81 and 84.43% respectively.  相似文献   

13.
Landsat MSS data in the form of BW imagery were used to generate Soil Map of Punjab convering an area of about 5 million ha. MSS bands 2 and 4 (L4) were interpreted singly and combined to form a compostie interpretetion map with which field check, was translated in terms of soils. The abstraction level attained was Great Groups of Soil Taxonomy. The distribution of soils of Punjab, with Aridisols in the SW through Inceptisols in the Central zone, to Alfisols in the NE sectors suggested a strong geographic bias in their evolution. The major soils of the aridic zone (SW sectors of the state) are: Camborthids, Calciorthids, Torripsamments and Torrifluvents and of the Ustic zone (Central Punjab) are Ustochrepts and Haplustalfs (the most productive soils of the State), Ustipsamments and Ustifluvents. The salt affected soils are found interspersed with these soils. In the udic zone (NE fringe), Hapludalfs, Eutrochrepts, Udifluvents, Udorthents and Hapludolls are the major soil formations. The soil map reveals that about one-third of the total area of the state suffers from various soil problems, such as soil salinity and sodicity, water logging, and soil erosion. For increasing agricultural production, these soils need to be brought under the plough. The study leads to conclude that for quick and precise macro level land use planning, the use of Landsat imagery is imperative.  相似文献   

14.
The paper presents the results of hydrogeomorphological mapping using IRS-IB LISS II data and evaluation of ground water prospects of each hydrogeomorphological unit in the Lehra Gaga block of Sangrur district, Punjab. The major geomorphic units identified in the area are, alluvial plain, sand dunes, palaeo channels and the Ghagar flood plain. The study area being part of alluvial plain has good to excellent ground water prospects. Field observations showed that ground water occurs under both confined and unconfined conditions with water table at shallow depth. The area on either side of the Ghagar river and along the major canals (about 46% of the total geographical area in the block) have good quality of ground water and is suitable for irrigation, whereas the water quality is marginal (sodic) in 52 per cent area of the block..  相似文献   

15.
The spectral reflectance characteristics of different types of natural and anthropogenic salt-affected soils have been studied under field conditions. The spectral reflectance value for non-saline and all types of salt-affected soils was maximum in near infra red region (800–1000 nm). The natural salt-affected soils having surface salt encrustation showed highest reflectance value followed by the sodic soils (formed due to high residual sodium carbonate water irrigation) natural saline soils and saline soils due to saline water irrigation. Soil texture, pH, CaC03 and organic matter together accounted for 29.6% variation in the maximum reflectance percentage value out of which only pH accounted for more than half (14.2% variation).  相似文献   

16.
Secondary salinisation is the most harmful and extended phenomenon of the unfavourable effects of irrigation on the soil and environment. An attempt was made to study the impact of poor quality ground water on soils in terms of secondary salinisation and availability of soil nutrients in Faridkot district of Punjab of northern India. Based on physiographic analysis of IRS 1C LISS-III data and semi-detailed soil survey, the soil map was finalized on a 1:50,000 scale and digitized using Arc Info GIS. Georeferenced surface soil samples (0–0.15 m) from 231 sites were collected and analyzed for available phosphorus (P) and potassium (K). Interpolation by kriging produced digital spatial maps of available P and K. Ground water quality map was generated in GIS domain on the basis of EC (electrical conductivity) and RSC (residual sodium carbonate) of ground water samples collected from 374 georeferenced tube wells. Integration of soil and ground water quality maps enabled generating a map showing degree (high, moderate and low) and type (salinity, sodicity and both) of vulnerability to secondary salinization. Fine-textured soils have been found to be highly sensitive to secondary salinisation, whereas medium-textured soils as moderately sensitive to secondary salinisation. The resultant map was integrated with available P and K maps to show the combined influence of soil texture and ground water quality on available soil nutrients. The results show that available P and K in the soils of different physiographic units were found in the order of Ap1 < Ap2 < Ap3. The soils of all physiographic units had sizeable area having high content of P (>22.5 kg / ha) and medium available K (135–335 kg ha−1) in most of the test sites when irrigated with saline, sodic or poor quality water.  相似文献   

17.
In the present study, an attempt has been made to analyse IRS-ID LISS-III satellite data in conjunction with field observations for geomorphological mapping and pedo-geomorphological characterisation in Mohgaon area of Nagpur district, Maharashtra. Analysis of satellite data reveals distint geomorphological units viz., plateau top, isolated mounds, linear ridges, escarpments, plateau spurs, subdued plateau, rolling plains, pediments, narrow valleys and main valley floor. Soil profiles, studied on different identified landforms, showed variation in site and morphological charactaristics. Moderate soil erosion occurs on plateau top, isolated mouds, plateau spurs, rollinmg plains and pediments. Severe erosion was identified on escarpments and subdued plateau and narrow valleys suffer very slight erosional hazards. Moderately well drained soils were found on rolling plains, pediments, narrow valleys and main valley floor. Well drained soils were noticed on plateau top and plateau spurs. Very shallow soils were found on the plateau top and isolated mounds. Shallow soils are found in linear ridges, escarpments, plateau spurs and rolling plains. Moderately deep and deep soils are found on subdued plateau, pediments and main valley floor. The landform-soil relatioinship reveals that the soils on the plateau top and isolated mounds are very shallow, well drained, clay textured. The soils on the narrow valleys and main valley floor are deep, moderatly well drained, and clayey in texture. It also indicates that landform-soil processes are governed by physiographic position, drainage, slope and erosion conditions of the area. The present study reveals that the analysis of remotely sensed data in conjunction with field observations in GIS will be of immense help in geomorphology mapping, analysis of landform-soil relationships and generation of their geo-spatial database.  相似文献   

18.
Management of salt-affected soils is a challenging task in the input intensive rice-wheat cropping zone of the Indo-Gangetic plains (IGP). Timely detection of salt-affected areas and assessment of the degree of severity are vital in order to narrow down the potential gap in yield. Conventional laboratory techniques of saturation extract electrical conductivity (ECe) and sodium adsorption ration (SAR) for soil salinity assessment are time-consuming and labour intensive; the VNIR (visible-near infrared) reflectance spectroscopy technique provides ample information on salinity and its attributes in an efficient and cost-effective way. This study aims to develop robust soil reflectance spectral models for rapid assessment of soil salinity in the salt affected areas of the IGP region of Haryana using VNIR reflectance spectroscopy. The results indicated that the spectral region between 1390 and 2400 nm was highly sensitive to measure changes in salinity. The developed hyperspectral models explained more than 80 % variability in ECe, and other salinity related attributes (saturated extract Na+, Ca2+ + Mg2+, Cl? and SAR) in the validation datasets. With the increasing availability of data from hyperspectral sensors in near future, the study will be very useful in real time monitoring of soils in the spatio-temporal context; enabling the farmers of IGP area to deal with salt degradation more effectively and efficiently.  相似文献   

19.
Soilscapes of the Ghaggar river basin falling in Haryana and Punjab were interpreted and studied by using the Landsat imagery and aerial photographs. Five major landform units identified and demarcated in the area were : channel courses, levees, flood-plains undulating, basinal floodplains and relict basins. On the basis of sedimentation, nature of the river pattern and soil characteristics, the whole basin was divided into three reaches — upper, middle and lower. Taxonomically the soils were placed under Typic Ustipsamments, Typic Ustorthents and lypic Ustifluvents on channel courses; Aquic Ustifluvents, Typic Ustifluvents and Typic Ustochrepts on levees; Fluventic Ustochrepts, Udic Ustochrepts and lypic Camborthids on floodplains undulating; Typic Ustorthents and Udic Ustochrepts on basinal floodplains; Typic Natrustalfs and Natric Camborthids on relict basins. Two new subgroups were proposed, i.e., Natric within the order of Entisol and Inceptisol, and Aquic-udic within the order of Inceptisol. Two dominant geomorphic processes were observed, i.e., fluvial and aeolian.  相似文献   

20.
The arid tract of Punjab experiences various problems like thick sand cover (sand dunes) in large area, poor retention of water and nutrients in coarse textured soils, soil salinity and/or alkalinity, water logging and poor ground water quality. In the present study multidate remotely sensed data both in the form of aerial photographs and satellite imagery on 1:50,000 scale were interpreted visually to map physiography and soils. The ground water samples from tubewells distributed all over the area were collected and analysed to prepare ground water quality map. The soil and ground water quality maps were integrated to produce a resource constraint map of the area showing physical, chemical and hydrological constraints. The study revealed that alluvial plain suffers from hydrological constraints due to marginal to.poor ground water in 86% of the total area. The sand dunes show both physical and hydrological constraints due to coarse textured (sandy) soils and brackish ground water. The basins having soil salinity and brackish ground water cover 0.10% of the area. Keeping in view the type of constraint, locale specific measures like levelling and stabilisation of sand dunes, reclamation of salt affected and water logged areas followed by plantation of tree species which act as biopumps are suggested. The conjuctive use of surface (canal) and ground water is essential to prevent secondary salinization and sodification. The study demonstrates the potential usefulness of remote sensing technology in mapping natural resources and assess the nature, magnitude and spatial distribution of resource constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号