首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ronald C. Taylor 《Icarus》1985,61(3):490-496
Refinements to the pole-determination method photometric astrometry (PA) were completed in 1983 (R. C. Taylor and E. F. Tedesco, 1983, Icarus54, 13–22). A goal is to redo the pole analysis for every asteroid whose pole had been determined from earlier versions of PA: Previous PA poles are reviewed in this paper. Asteroid 433 Eros is in that collection and has redone. The result are prograde rotation; a sidereal period of 0.219588 ± 0.000005 day; and a north pole at 22° longitude, +9° latitude. The uncertainty of the pole is 10°. The pole position of Eros determined by C.D. Vesely (1971, In Physical Studies of Minor Planets (T. Gehrels, Ed.), pp. 133–140, NASA SP-267) and Dunlap (1976, Icarus28, 69–78), using earlier versions of photometric astrometry, were within 21 and 7°, respectively, of the present result.  相似文献   

2.
In January of 1982 we measured a microwave spectrum of CO in the Martian atmosphere utilizing the rotational J = 1 → 2 transition of CO. We have analyzed data and reanalyzed the microwave spectra of R. K. Kakar, J. W. Waters, and W. J. Wilson, (Science196, 1090–1091, 1977, measured in 1975) and J. C. Good and F. P. Schloerb, (Icarus47, 166–172, 1981 measured in 1980) in order to constrain estimates of the temporal variability of CO abundance in the Martian atmosphere. Our values of CO column density from the data of Karar et al., Good and Schloerb, and our own are 1.7 ± 0.9 × 1020, 3.0 ± 1.0 × 1020, and 4.6 ± 2.0 × 1020cm?2, respectively. The most recent estimate of CO column density from the 1967 infrared spectra of J. Connes, P. Connes, and J.P. Maillard, (Atlas de Spectres Infarouges de Venus, Mars, Jupiter, et Saturne, Editions due Centre National de la Recherche Scientifique, Paris, 1969), is 2.0 ± 0.8 × 1020 cm?2 (L.D.G. Young and A.T. Young, Icarus30, 75–79, 1977). The large uncertainties given for the microwave measurements are due primarily to uncertainty in the difference between the continuum brightness temperature and atmospheric temperatures of Mars. We have accurately calculated the variation among the observations of the continuum (surface) brightness temperature of Mars, which is primaroly a function of the observed aspect of Mars. A more difficult problem to consider is variability of global atmospheric temperatures among the observations, particularly the effects of global dust storms and the ellipticity of the orbit of Mars. The large bars accompanying our estimates of CO column density from the three sets of microwave measurements are primarily caused by an assumed uncertainty of ±10°K in our atmospheric temperature model due to possible dust in the atmosphere. A qualitative consideration of seasonal variability of global atmospheric temperatures among the measurements suggests that there is not strong evidence for variability of the column abundance of CO on Mars, although variability of 0–100% over a time scale of several years is allowed by the data set. The implication for the variability of Mars O2 is, crudely, a factor of two less. We found that the altitude distribution of CO in the atmosphere of Mars was not well constrained by any of the spectra, although our spectrum was marginally better fitted by an altitude increasing profile of CO mixing ratios.  相似文献   

3.
Absolute spectrophotometry of four regions on the visible disk of Saturn (north and south polar regions, equatorial band, south “temperate” region) from 3390 to 8080 Å is reported. Spectral resolution is 10 Å in the interval 3390–6055 Å, and 20 Å; aperture size is 1.92 arcsec. The explicit purpose of our observations was to provide ground-based photometric calibration for the Pioneer Saturn Imaging Photopolarimeter (IPP). We also compare our data with earlier spectrophotometric measurements of Saturn (R.L. Younkin and G. Munch, 1963,Mem. Soc. Roy. Sci. Liege7, 123–136; W.M. Irvine and A.P. Lane, 1971,Icarus16, 10–26; T.B. McCord, T.V. Johnson, and J.H. Elias, 1971,Astrophys. J.165, 413–424) and with the M. Podolak and R.EE. Danielson (1977)Icarus30, 479–492) parameterization of “Axel Dust.” The latter reproduces the broad features but not the details of the observed spectral reflectivity (I/F). We find that large depths of clear molecular hydrogen (>14 km-am in the temperate regions) are needed to match the observed upturn in reflectivity shortward of 3800 Å.  相似文献   

4.
The available solar flux at a given altitude in the atmospheres of Mars and Venus is attenuated mainly by CO2 (molecular absorption and Rayleigh scattering) with an extra contribution due to SO2 on Venus. The dissociation cross section of CO2 depends on temperature. At temperatures appropriate for these atmospheres (~250°K), the cross sections are about 15% lower than those at room conditions (Y.L. Yung and W.B. De More, 1982, Icarus, 51, 199). It is shown that this temperature effect cannot be neglected in the evaluation of photolysis rates. Calculations of the photodissociation coefficients of CO2, SO2, HCl, and H2O are presented. For example, at the surface of Mars, the coefficient of H2O is nearly multiplied by a factor of 10!  相似文献   

5.
An error in the Hayes and Belton (1977), Icarus32, 383–401) estimate of the rotation period of Neptune is corrected. If Neptune exhibits the same degree of limb darkening as Uranus near 4900 Å, the rotation period is 15.4 ± 3 hr. This value is compatible with a recent spectroscopic determination of Munch and Hippelein (1979) who find a period of 11.2?1.2+1.8 hr. However, if, as indirect evidence suggests, the law of darkening on Neptune at these wavelengths is less pronounced than on Uranus, then the above estimates may need to be lengthened by several hours. Recent photometric data are independently analyzed and are found to admit several possible periods, none of which can be confidently assumed to be correct. The period of Neptune most probably falls somewhere in the range 15–20 hr. The Hayes-Belton estimate of the period of Uranus is essentially unaffected by the above-mentioned error and remains at 24 ± 4 hr. All observers agree that the rotation period of Uranus is longer than that of Neptune.  相似文献   

6.
Kevin H. Baines 《Icarus》1983,56(3):543-559
High-resolution (0.1-Å) spectra of the 6818.9-Å methane feature obtained for Jupiter, Saturn, and Uranus by K. H. Baines, W. V. Schempp, and W. H. Smith ((1983). Icarus56, 534–542) are modeled using a doubling and adding code after J. H. Hansen ((1969). Astrophys. J.155, 565–573). The feature's rotational quantum number is estimated using the relatively homogeneous atmosphere of Saturn, with only J = 0 and J = 1 fitting the observational constraints. The aerosol content within Saturn's northern temperate region is shown to be substantially less than at the equator, indicating a haze only half as optically thick. Models of Jupiter's atmosphere are consistent with the rotational quantum-number assignment. Synthetic line profiles of the 6818.9-Å feature observed on Uranus reveal that a substantial haze exists at or above the methane condensation region with an optical depth eight times greater than previously reported. Seasonal effects are indicated. The methane column abundance is 5 ± 1 km-am. The mixing ratio of methane to hydrogen within the deep unsaturated region of the planet is 0.045 ± 0.025, based on an H2 column abundance of 240 ± 60 km-am (W. H. Smith, W. Macy, and C. B. Pilcher (1980). Icarus43, 153–160), thus indicating that the methane comprises between one-sixth and one-half of the planet's mass. However, proper reevaluation of H2 quadrupole features accounting for the haze reported here may significantly reduce the relative methane abundance.  相似文献   

7.
Infrared polarimetry of Venus over the phase angles from 18 to 171° has been made extending previous measurements (S. Sato, K. Kawara, Y. Kobayashi, H. Okuda, K. Noguchi, T. Mukai, and S. Mukai (1980). Icarus43, 288) in both wavelength λ and phase angle θ. The results of polarization measurements at 2.25 μm ? λ ? 5.0 μm are (i) small positive and negative values at K(2.25 μm), (ii) a remarkable variation with λ in the CVF(2.2?4.2μm) filter region, (iii) a nearly smooth curve as a function of θ having a peak value of ~36% at θ ~ 90° at both 3.6 μm and L′(3.8 μm), and (iv) a decrease with increasing field of view at M(5.0 μm) due to the contamination of thermal emission from the dark crescent. Furthermore, at 3.6 μm and L′(3.8 μm), (v) higher values at the poles than at the equator and (vi) 4.5- to 5.9-day periodic fluctuations are also found. From a comparison with model calculations, the results confirm the existence of a thin haze layer consisting of submicron-size particles above the main clouds of Venus; e.g., its optical thickness is about 0.1 at λ ~ 0.94 μm. In addition, result (vi) could be explained by a variation of the optical thickness of the haze layer or that of the brightness temperature of the main clouds.  相似文献   

8.
Observations of Saturn's satellites and external rings during the 1980 edge-on presentation were obtained with a focal coronograph. A faint satellite traveling in the orbit of Dione and leading it by 72° has been detected, together with the two inner satellites already suspected (cf. J. W. Fountain and S. M. Larson, 1978,Icarus36, 92–106). The external ring has been observed on both east and west sides; it may extend up to ?8.3 Saturn radii, and appears structured.  相似文献   

9.
L.H. Wasserman 《Icarus》1974,22(1):105-110
The nightime cooling of the Jovian atmosphere near the occulation level of 1014cm?3 is calculated using the models of Strobel (1973) and Strobel and Smith (1973). The amount of cooling is found to depend on χ, the methane mixing ratio; μ the mean molecular weight; and the sunrise temperature. Using the range of sunrise (emersion) temperatures observed by Veverka et al. (1974), the overnight cooling is calculated to be 1.5–5.5°K, if reasonable assumptions are made for χ and μ. The argument may be reversed to show that the agreement in measured sunrise and sunset temperatures obtained by other observers of the β Sco occulation implies that χ cannot be significantly greater than the generally accepted value of 7 ×10?4.  相似文献   

10.
The Tunguska event on 30 June 1908 has been subjected to much speculation within different fields of research. Publication of the results of the 1961 expedition to the Tunguska area (Florensky, 1963) supports that a cometary impact caused the event. Based on this interpretation, calculations of the impactor energy release and explosion height have been reported by Ben-Menahem (1975), and velocity, mass, and density of the impactor by Petrov and Stulov (1975). Park (1978) and Turco et al., 1981, Turco et al., 1982, used these numbers to calculate a production of ca. 30 × 106 tons of NO during atmospheric transit. This paper presents a high-resolution study of nitrate concentration in the Greenland ice sheet in ca. 10 years covering the Tunguska event. No signs of excess nitrate are found in three ice cores from two different sites in Greenland in the years following the Tunguska event. By comparing these results with results for other aerosols generally found in the ice, the lack of excess NO3? following the Tunguska event can be interpreted as indicating that the impactor nitrate production calculated by Park (1978) and Turco et al., 1981, Turco et al., 1982 are 1–2 orders of magnitude too high. To explain this it is suggested, from other lines of reasoning, that the impactor density determined by Petrov and Stulov (1975) probably is too low.  相似文献   

11.
A. Seiff 《Icarus》1982,51(3):574-592
The state properties observed by Pioneer Venus experiments in Venus' mesosphere and thermosphere impose constraints on the dynamics at those altitudes and, in fact, suggest a very vigorous dynamics, by virtue of the extremely large day-night pressure contrasts. At both the morning and evening terminators, these are directed to accelerate the flow from the day hemisphere to the night, and are thus consistent with subsolar to antisolar circulation, possibly somewhat unsymmetrical. There is a major vertical contraction of the atmosphere above 100 km as it crosses the terminators, associated with the nightside cooling. Flow across both terminators is thus descending, but at rather gentle angles (~0.003 rad), and there is a consequent downward transport of composition from the dayside to the nightside. The pressure differences and gravitational acceleration in the descending flow are sufficient to generate supersonic speeds in the flow crossing the terminator in the absence of viscosity. However, the equation of continuity cannot be satisfied with such high velocities, given the measured state properties. This is interpreted to be evidence for strong viscous deceleration and dissipation at the 110 to 120-km level, and possibly extending above 120 km. The viscosity required is that of turbulent motion, rather than laminar. It is noteworthy that the basic dynamic models of Dickinson and Ridley are for laminar viscosity. With moderate flow velocities approaching the terminator (~65 m/sec), as measured by A.L. Betz et al. (1977, Proceedings, Symposium on Planetary Atmospheres, pp. 29–33), and for an essentially unaccelerated flow crossing the terminator in the presence of viscous dissipation, as indicated by the continuity equation applied to the data, the observed nightside cooling below 140 km was found to be approximately that given by the 15-μm CO2 band radiative cooling model of R.E. Dickinson (1976, Icarus27, 479–493). This may be an indirect indication that the velocities are indeed low (i.e., less than 100 m/sec) in the subsolar-antisolar circulation, and are kept low by viscous forces. Calculations based on R.E. Dickinson and E.C. Ridley's equations (1977, Icarus30, 163–178) indicate that the radiative cooling continues into the nightside at a level sufficient to approximate the observed cooling zone width. Above 140 km, where CO2 becomes a minor constituent, another cooling mechanism is needed. It is suggested that this could be vertical diffusion with long mean free path, accompanied by exchange of thermal for potential energy. This could become important on the nightside above 140 km, where the mean free path λ ~ 0.5 km, and λg/cp ~ 5°K. Below 100 km, pressures depend primarily on latitude, which, on the basis of similar conditions in the deeper atmosphere, suggests zonal flow in cyclostrophic balance. Under this assumption, pressure differences between 30 and 60° latitude indicate a peak zonal velocity of ~130 m/sec at the cloud tops. The veocity decreases above this level toward zero near 90 km. The wind profile from the north and night probes is generally similar to that obtained earlier from north-day probe pressure differences. The pressure data thus suggest the existence of two dynamical regimes, a primarily subsolar-antisolar regime above 100 km, and a cyclostrophically balanced zonal regime below 100 km, which is an upward continuation of the circulation regime of the atmosphere below the clouds.  相似文献   

12.
David R. Soderblom 《Icarus》1985,61(2):343-345
Knowledge of a star's rotation period and ν sin i can be used to select stars that are seen pole-on, and thus are well suited to planetary searches by astrometric or direct-imaging means. A table of such stars is presented. This method is not suitable for discriminating equator-on systems and so cannot be used to select candidates for the photometric method of W. J. Borucki and A. L. Summers (1984, Icarus58, 121–134).  相似文献   

13.
Mars was observed in the CO (J = 1 → 0) 2.6-mm wavelength line between 29 March and 1 April, 1980. The data were analyzed using a model atmosphere based on Viking measurements. A least-squares fit of the model to the observed line profile yielded an average CO mixing ratio of (3.2 ± 1.1) × 10?3. This value is four times larger than that obtained by L. D. Kaplan, J. Connes, and P. Connes, 1969 (Astrophys. J.157, L187-L195) from analysis of an infrared spectrum obtained in 1967 by J. Connes, P. Connes, and J. P. Maillard, 1969 (Atlas of Near Infrared Spectra of Venus, Mars, Jupiter, and Saturn, Centre National de la Recherche Scientifique, Paris). Models of the Martian atmospheric chemistry indicate that this implied temporal variation could easily exist and that it would be due primarily to variations in the abundance of H2O.  相似文献   

14.
The minor planet 164 Eva passed through opposition on December 1, 1975 with a magnitude Bopp = 11.3 mag. Photoelectric observations at the Observatory of Torino, Italy, were carried out in two nights on Oct. 27/28 and Nov. 11, each with a run of about 3 hr. Two further successful photoelectric observations were carried out at the OHP, France, each with a run of about 6 hr. From all observed parts of the lightcurve a resulting synodic period of rotation of about 27.3 hr can be deduced, with a range of the total amplitude of at least Δm = 0.07 mag. With this period of 27.3 hr the minor planet 164 Eva is one more long period object, falling now between 654 Zelinda (H. J. Schober, 1975, Astron. Astrophys.44, 85–89) and 139 Juewa (J. Goguen et al., 1976, Icarus29, 137–142), at the high end in the histogram of the distribution of minor planet rotation periods.  相似文献   

15.
Dale P. Cruikshank 《Icarus》1980,41(2):246-258
New JHK photometry and spectrometry (1.4–2.6 μm) are presented for Enceladus, Hyperion, Phoebe, Umbriel, Titania, and Oberon. From spectral signatures, mainly in the 2-μm region, water ice is verified on Enceladus and identified on Hyperion and the three Uranian satellites. The JHK photometry shows that Phoebe is different from all other satellites and asteroids observed thus far. The new photometry corroborates the earlier conclusion by Cruikshank et al. (1977) Astrophys. J217, 1006–1010] that the Uranian satellites, as a class, have overall surface reflectances different from other water-ice-covered satellites, and the reason for the difference remains unclear. The diameters and the masses of the Uranian satellites are reviewed in light of the probable high albedo representative of ice-covered surfaces and the new dynamical studies by Greenberg, 1975, Greenberg, 1976, Greenberg, 1978.  相似文献   

16.
A contradiction in the sulfuric acid cloud hypothesis of Venus, i.e., nondetection of 4.8 μm polarization by Landau (1975), is examined on the basis of the multiple scattering calculations for the cloud model of Hansen and Hovenier (1974) including an internal heat source. Results show that the polarized thermal component cannot depolarize the scattered sunlight, and therefore a large polarization of about 13% is expected at a phase angle of 110° and wavelength of 4.8 μm, in contrast with Landau's measurements. Our computations are, however, in agreement with the measurements by S. Sato et al. (in “Proceedings, 10th Lunar and Planetary Symposium,” pp. 179–182. Institute of Space and Aeronautical Science, University of Tokyo, July 11–13, 1977).  相似文献   

17.
K.L. Rasmussen 《Icarus》1982,52(3):444-453
Cooling rates and nucleation histories of six low-Ni and two high-Ni members of group IVA iron meteorites were calculated by a mid-taenite concentration-taenite lamella width method that included the effects of local bulk Ni and P variation. The local bulk Ni is determined experimentally as described in K. L. Rasmussen [Icarus45, 564–576 (1981)]. The local bulk P parameter, included for the first time in the present work, is estimated from the phase diagram during the simulation. Two parent bodies are suggested for group IVA. The body containing the high-Ni members had a cooling rate (~2°K/My) lower than earlier cooling rate determinations on IVA members. The variable (by a factor of 4) cooling rates found for the low-Ni members imply a raisin origin. The nucleation histories of the meteorites are interpreted as reflecting the very early shock histories of the meteorite parent bodies.  相似文献   

18.
We have obtained measurements of Venus' reflection spectrum in the 1.2 to 4.1-μm spectral region from a NASA-Ames operated Lear jet. This was accomplished by observing both Venus and the sun with a spectrometer that contained a circular, variable interference filter, whose effective spectral resolution was 2%. The aircraft results were compared with computer generated spectra of a number of cloud candidates. The only substance which gave an acceptable match to the profile of Venus' strong 3-μm absorption feature, was a water solution of sulfuric acid, that had a concentration of 75% or more H2SO4 by weight. However, our spectra also show a modest decline in reflectivity from 2.3 μm towards 1.2-μm wavekength, which is inconsistent with the flat spectrum of sulfuric acid in this spectral region. We hypothesize that this decline is due to impurities in the sulfuric acid droplets.We also compared our list of cloud candidates with several other observed properties of the Venus clouds. While this comparison does not provide as unique an answer as did our analysis of the 3-μm band, we find that, in agreement with the results of Young (1973) and Sill (1973), concentrated sulfuric acid solutions are compatible with these additional observed properties of the Venus clouds. We conclude that the visible cloud layer of Venus is composed of sulfuric acid solution droplets, whose concentration is 75% H2SO4, or greater, by weight.  相似文献   

19.
The question of the collisional production of the β meteoroids is reexamined incorporating recent experimental results (A. Fugiwara, G. Kamimoto, A. Tsukamoto, 1977, Icarus31, 277–288). The collisional model yields a flux of fragments supported by the conservation of mass flux which does not account by far for the observed flux of submicron grains. Particles larger than about 100 μm will be destroyed by collisions inside 1 AU, well before they can get near the Sun. The existence of two independent populations of interplanetary dust grains as proposed by L. B. Le Sergeant and Ph. L. Lamy (1978, Nature266, 822–824; 1980, Icarus43, 350–372) appears reinforced. It is proposed that the bulk of submicron grains does not necessarily travel in hyperbolic orbits and that β meteoroids may be a phenomenon—possibly transitory—of limited importance.  相似文献   

20.
We present interferometric observations of Saturn and its ring system made at the Hat Creek Radio Astronomy Observatory at a wavelength of 1.30 cm. The data have been analyzed by both model-fitting and aperture synthesis techniques to determine the brightness temperature and optical thickness of the ring system and estimate the amount of planetary limb darkening. We find that the ring optical depth is close to that observed at visible wavelenghts, while the ring brightness temperature is only 7 ± 1°K. These observational constraints require the ring particles to be nearly conservative scatterers at this wavelength. A conservative lower limit to the single-scattering albedo of the particles at 1.30-cm wavelength is 0.95, and if their composition is assumed to be water ice, then this lower limit implies an upper limit of 2.4 m for the radius of a typical ring particle. The aperture synthesis maps show evidence for a small offset in the position of Saturn from that given in the American Ephemeris and Nautical Almanac. The direction and magnitude of this offset are consistent with that found from a similar analysis of 3.71-cm interferometric data which we have previously presented (F.P. Schloerb, D.O. Muhleman, and G.L. Berge, 1979b, Icarus39, 232–250). Limb darkening of the planetary disk has been estimated by solving for the best-fitting disk radius in the models. The best-fitting radius is 0.998 ± 0.004 times the nominal Saturn radius and indicates that the planet is not appreciably limb dark at 1.30 cm. Since our previous 3.71-cm data also indicated that the planet was not strongly limb dark (F.P. Schloerb, D. O. Muhleman, and G.L. Berge, 1979a, Icarus39, 214–230), we feel that the limb darkening is not strongly wavelength dependent between 1.30 and 3.71 cm. The difference between the best-fitting disk radii at 3.71 and 1.30 cm is +0.007 ± 0.007 times the nominal Saturn radius and suggests that the planet is more limb dark at 1.30 cm than at 3.71 cm. Models of the atmosphere which have NH3 as the principal source of microwave opacity predict that the planet will be less limb dark at 1.30 cm. However, the magnitude of the effect predicted by the NH3 models is ?0.009 and only marginally different from the observed value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号