首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astronomical observations and cosmochemical calculations suggest that the planet Mercury may be composed of materials which condensed at relatively high temperatures in the primitive solar nebula and may have a basaltic crust similar to parts of the moon. These findings, plus the long standing inference that Mercury is much richer in metallic iron than the other terrestrial planets, provide important constraints which we apply to models of the thermal evolution and density structure of the planet. The thermal history calculations include explicitly the differing thermal properties of iron and silicates and account for core segregation, melting and differentiation of heat sources, and simulated convection during melting. If the U and Th abundances of Mercury are taken from the cosmochemical model of Lewis, then the planet would have fully differentiated a metal core from the silicate mantle for all likely initial temperature distributions and heat transfer properties. Density distributions for the planet are calculated from the mean density and estimates of the present-day temperature. For the fully differentiated model, the moment of inertia C/MR2 is 0.325 (J2=0.302×10?6). For models with lower heat source abundances, the planet may not yet have differentiated. The density profiles for such models give C/MR2=0.394 (J2=0.487×10?6). These results should be useful for preliminary interpretation of the Mariner 10 measurements of Mercury's gravitational field.  相似文献   

2.
When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristics of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested, the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450°K and a pressure of 5 × 10?6 atm, the maximum core mass at which instability occurs is approximately 115 earth masses; this value is rather insensitive to the position in the solar nebula or to the background pressure of the solar nebula. However, if the adiabat is lowered, then the core mass corresponding to instability is decreased. Since the core masses found by Podolak and Cameron for the giant planets are significantly less than the critical core mass corresponding to the initial solar nebula adiabat, we conclude that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling.  相似文献   

3.
Gravitational stability of gaseous protostellar disks is relevant to theories of planetary formation. Stable gas disks favor formation of planetesimals by the accumulation of solid material; unstable disks allow the possibility of direct condensation of gaseous protoplanets. We present the results of numerical experiments designed to test the stability of thin disks against large-scale, self-gravitational disruption. The disks are represented by a distribution of about 6 × 104 point masses on a two-dimensional (r, φ) grid. The motions of the particles in the self-consistent gravity field are calculated, and the evolving density distributions are examined for instabilities. Two parameters that have major influences on stability are varied: the initial temperature of the disk (represented by an imposed velocity dispersion), and the mass of the protostar relative to that of the disk. It is found that a disk as massive as 1M, surrounding a 1M protostar, can be stable against long-wavelength gravitational disruption if its temperature is about 300°K or greater. Stability of a cooler disk requires that it be less massive, but even at 100°K a stable disk can have an appreciable fraction (13) of a solar mass.  相似文献   

4.
The structure and evolution of isolated giant gaseous protoplanets in the mass range 0.3 to 4.5 Jovian masses is investigated. Under the assumptions of the calculations, the following properties are found: (1) The central region of protoplanets of mass less than about 1 Jovian mass is, at some evolutionary epoch, thermodynamically favorable to the liquification of major interstellar grain constituents. Grains in this region can grow and infall to form a planetary core in tens to hundreds of years. (2) All protoplanets studied are convective through-out most of their interior. This property is in contrast to Bodenheimer's fully radiative proto-Jupiter models. We attribute the difference to the use of improved opacities. The presence of convection has at least two important consequences. First, it can mix grains into the central regions during planetary core formation, possibly allowing a core of mass ~ 1 Earth mass to grow. Second, convection can transport angular momentum outward as the protoplanet quasi-statically contracts. (3) The thermal contraction time depends sensitively on the surface opacity (T < 200°K). This opacity is uncertain within a factor of 5. The contraction times imply that some protoplanets can remain stable against tidal disruption by the proto-Sun and solar nebula during core-forming stages.  相似文献   

5.
V.S. Safronov  E.L. Ruskol 《Icarus》1982,49(2):284-296
A two-stage growth of the giant planets, Jupiter and Saturn, is considered, which is different from the model of contraction of large gaseous protoplanets. In the first stage, within a time of ~3 × 107 years in Jupiter's zone and ~2 × 108 years in Saturn's zone, a nucleus forms from condensed (solid) material having the mass, ~1028 g, necessary for the beginning of acceleration. The second stage may gravitating body, and a relatively slow accretion begins until the mass of the planet reaches ~10 m. Then a rapid accretion begins with the critical radius less than the radius of the Hill lobe, so that the classical formulae for the rate of accretion may be applied. At a mass m > m1 ≈ 50 m accretion proceeds slower than it would according to these formulae. When the planet sweeps out all the gas from its nearest zone of feeding (m = m2 ≈ 130 m), the width of the exhausted zone being built13 of the whole zone of the planet) growth is provided the slow diffusion of gas from the rest of the zone (time scale increases to 105?106 years and more). The process is terminated by the dissipation of the remnants of gas. In Saturn's zone m1 > m2 ≈ 30 m. The initial mass of the gas in Jupiter's zone is estimated. Before the beginning of the rapid accretion about 90% of the gas should have been lost from the solar system, and in the planet's zone less than two Jupiter masses remain. The highest temperature of Jupiter's surface, ≈5000°K, is reached at the stage of rapid accretion, m < 100 m, when the luminosity of the planet reaches 3 × 10?3 L. This favors an effective heating of the inner parts of the accretionary disk and the dissipation of gas from the disk. The accretion of Saturn produced a temperature rise up to 2000?2400° K (at m ≈ 20?25 m) and a luminosity up to 10?4 L.  相似文献   

6.
Joseph A. Burns 《Icarus》1976,28(4):453-458
Mercury, currently rotating very slowly, probably rotated faster in the past. If Mercury's rotation period had been near 8 hours initially, similar to that of most solar system bodies today, it would have been flattened by a few percent. As Mercury was slowed by solar tides, craters which were circular when they were emplaced would have been distorted by the same few percent. Substantial surface stresses, well above the fracture stress, would have been produced unless stress relief occurred; these stresses should have produced tensional fractures near the poles and two intersecting sets of shear planes in equatorial regions. Satellite orbits about the slowly spinning Mercury have been shown to collapse onto its surface: the impact craters resulting from these hypothetical lost satellites should be elongated along the orbit paths, which probably lie near the equator. However, none of these features has been found on the Mariner 10 images. They may be obscured by the effects of tidal heating that should cause an overall internal temperature increase of about 100°K although the increase would be substantially more in certain regions. Radial tides, sometimes called push-pull tides, are important at the present time because Mercury's large orbital eccentricity causes the planet to undergo significant tidal flexing each orbital period; the contemporary tidal heating due to this mechanism is estimated at more than 1016 erg/sec.  相似文献   

7.
Shailendra Kumar 《Icarus》1976,28(4):579-591
Measurements made during the Mariner 10 flybys of Mercury have shown that this planet has a tenuous atmosphere, somewhat similar to that of the Moon, which consists of at least helium and can be classified as an exosphere. The amount of helium observed can be supplied by either the accretion of only a fraction of the solar wind He2+ diffusing across the magnetopause, or from outgassing of radiogenic helium from the planetary crust. The role of solar wind in the maintenance and depletion of Mercury's atmosphere is discussed in view of the density upper limits established from Mariner 10. The argon supply rate on Mercury is probably not more than that on the Earth, but it is difficult to say whether Mercury is deficient in potassium or not on the basis of the present data. The global outgassing of CO2 and H2O from the planet interior is estimated to be at least four orders of magnitude smaller than for Earth which indicates that either Mercury is deficient in volatiles or that this planet is very inactive.  相似文献   

8.
Models of the protosatellite accretion disk of Saturn are developed that satisfy cosmochemical constraints on the volatile abundances in the atmospheres of Saturn and Titan with due regard for the data obtained with the Cassini orbiter and the Huygens probe, which landed on Titan in January 2005. All basic sources of heating of the disk and protosatellite bodies are taken into account in the models, namely, dissipation of turbulence in the disk, accretion of gaseous and solid material onto the disk from the feeding zone of Saturn in the solar nebula, and heating by the radiation of young Saturn and thermal radiation of the surrounding region of the solar nebula. Two-dimensional (axisymmetric) temperature, pressure, and density distributions are calculated for the protosatellite disk. The distributions satisfy the cosmochemical constraints on the disk temperature, according to which the temperature at the stage of the satellite formation ranged from 60–65 K to 90–100 K at pressures from 10?7 to ?10?4 bar in the zone of Titan’s formation (according to estimates, r = 20–35R Sat). Variations of the basic input parameters (the accretion rate onto the protosatellite disk of Saturn from the feeding zone of the planet ?; the parameter α characterizing turbulent viscosity of the disk; and the mass concentration ratio in the solid/gas system) satisfying the aforementioned temperature constraint are found. The spectrum of models satisfying the cosmochemical constraints covers a considerable range of consistent parameters. A model with a rather small flux of ? = 10?8 M Sat/ yr and a tenfold depletion of Saturn’s disk in gas due to gas scattering from the solar nebula is at one side of this range. A model with a much higher flux of ? = 10?6 M Sat/yr and a hundredfold decrease in opacity of the disk matter owing to decreased concentration of dust particles and/or their agglomeration into large aggregates and sweeping up by planetesimals is at the other side of the range.  相似文献   

9.
Evolutionary calculations are presented, in a spherically symmetric approximation, for a protoplanet of 1 Jovian mass with homogeneous solar composition during the early phase of quasi-static contraction prior to the dissociation of molecular hydrogen. In contrast to earlier calculations which assume that protoplanets are isolated, this study invokes a time-dependent surface boundary condition that simulates physical conditions in an evolving primitive solar nebula. In a first set of calculations the protoplanet is surrounded by a “thermal bath” whose temperature varies with time and whose pressure is small and constant in time. Under a wide range of parameters the result is evaporation and complete dispersal of the object. Conditions required for the protoplanet to survive are discussed. In a second set of calculations both the temperature and pressure at the surface vary with time according to models of the solar nebula. In this case the protoplanet is not dispersed, but the evolution is accelerated or retarded relative to that of an isolated protoplanet, depending upon whether the entropy in the nebula is lower than or higher than, respectively, the entropy in the outer layers of the protoplanet. Processes by which terrestrial planets can form in the cores of giant gaseous protoplanets are discussed.  相似文献   

10.
Peter Bodenheimer 《Icarus》1974,23(3):319-325
The evolution of the protoplanet Jupiter is followed, using a hydrodynamic computer code with radiative energy transport. Jupiter is assumed to have formed as a subcondensation in the primitive solar nebula at a density just high enough for gravitational collapse to occur. The initial state has a density of 1.5 × 10?11 g cm?3 and a temperature of 43 K; the calculations are carried to an equilibrium state where the central density reaches 0.5 g cm?3 and the central temperature reaches 2.5 × 104 K. During the early part of the evolution the object contracts in quasi-hydrostatic equilibrium; later on hydrodynamic collapse occurs, induced by the dissociation of hydrogen molecules. After dissociation is complete, the planet regains hydrostatic equilibrium with a radius of a few times the present value. Further evolution beyond this point is not treated here; however the results are consistent with the existence of a high-luminosity phase shortly after the planet settles into its final quasistatic contraction.  相似文献   

11.
Observational constraints on interior models of the giant planets indicate that these planets were all much hotter when they formed and they all have rock and/or ice cores of ten to thirty earth masses. These cores are probably soluble in the envelopes above, especially in Jupiter and Saturn, and are therefore likely to be primordial. They persist despite the continual upward mixing by thermally driven convection throughout the age of the solar system, because of the inefficiency of double-diffusive convection. Thus, these planets most probably formed by the hydrodynamic collapse of a gaseous envelope onto a core rather than by direct instability of the gaseous solar nebula. Recent calculations by Mizuno (1980, Prog. Theor. Phys.64, 544) show that this formation mechanism may explain the similarity of giant planet core masses. Problems remain however, and no current model is entirely satisfactory in explaining the properties of the giant planets and simultaneously satisfying the terrestrial planet constraints. Satellite systematics and protoplanetary disk nebulae are also discussed and related to formation conditions.  相似文献   

12.
William R. Ward 《Icarus》1981,47(2):234-264
Secular resonances in the early solar system are studied in an effort to establish constraints on the time scale and/or method of solar nebula dispersal. Simplified nebula models and dispersal routines are employed to approximate changes in an assumed axisymmetric nebula potential. These changes, in turn, drive an evolutionary sequence of Laplace-Lagrange solutions for the secular variations of the solar system. A general feature of these sequences is a sweep of one or more giant planet resonances through the inner solar system. Their effect is rate dependent; in the linearized models considered, characteristic dispersal times ≤O(104?5 years) are required to avoid the generation of terrestrial eccentricities and inclinations in excess of observed values. These times are short compared to typical estimates of the accretion time scales [i.e., ~O(107?9 years)] and may provide an important boundary condition for developing models of nebula dispersal and solar system formation in general.  相似文献   

13.
John T. Wasson 《Icarus》2008,195(2):895-907
Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 105 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH4 at lower temperatures is kinetically inhibited, radiation associated with chondrule formation would have accelerated the conversion. There is now evidence that an appreciable fraction of the nanodiamonds previously held to be presolar were actually formed in the solar nebula. Industrial condensation of diamonds from mixtures of CH4 and H2 implies that high nebular CH4/CO ratios favored nanodiamond formation. A large fraction of chondritic insoluble organic matter may have formed in related processes. At low nebular temperatures appreciable water should have been incorporated into the smoke that condensed following dust (and some chondrule) evaporation. If chondrule formation continued down to temperatures as low as 250 K this process could account for the water concentration observed in primitive chondrites such as LL3.0 and CO3.0 chondrites. Higher H2O contents in CM and CI chondrites may reflect asteroidal redistribution. In some chondrite groups (e.g., CR) the Mg/Si ratio of matrix material is appreciably (30%) lower than that of chondrules but the bulk Mg/Si ratio is roughly similar to the CI or solar ratio. This has been interpreted as a kind of closed-system behavior sometimes called “complementarity.” This leads to the conclusion that nebular fines were efficiently agglomerated. Its importance, however is obscured by the observation that bulk Mg/Si ratios in ordinary and enstatite chondrites are much lower than those in carbonaceous chondrites, and thus that complementarity did not hold throughout the solar nebula.  相似文献   

14.
Abstract— Ningqiang is an anomalous CV chondrite (oxidized subgroup) containing a high abundance of aggregational inclusions (13.7 vol.%) and low abundances of refractory inclusions (1.0+1.0–0.5 vol.%) and bulk refractory lithophiles (~0.82 × CV). Ningqiang may have agglomerated after most refractory inclusions at the nebular midplane had already been incorporated into other objects. Coarse-grained rims surround only ~5% of Ningqiang chondrules, compared to ~50% in normal CV chondrites. Aggregational inclusions appear to have formed by incipient melting of fine-grained aggregates at relatively low temperatures in the solar nebula, possibly by the mechanism responsible for chondrule formation. Granoblastic porphyritic chondrules, which contain olivines forming 120° triple junctures and no mesostasis, probably formed in the solar nebula by incomplete melting of precursor materials that were olivine normative and had relatively low concentrations of Si, Ca, Al, Fe and Na.  相似文献   

15.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   

16.
The distribution of mass in the planetary system and solar nebula   总被引:1,自引:0,他引:1  
A model solar nebula is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately asr –3/2. Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula.  相似文献   

17.
Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short‐lived nuclide, 26Al, as the major heat source along with the impact‐induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial ~1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe‐Ni‐FeS) core of radius ~2000 km and a silicate mantle thickness of ~400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact‐induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe‐Ni‐FeS contents to ~71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury‐like exoplanets and the planetary embryos of Venus and Earth.  相似文献   

18.
New far-infrared observations of the NH3 rotation-inversion manifolds in the spectrum of Jupiter have been inverted with the use oftthe detailed ammonia line opacity. A temperature of 160°K at a 1-bar pressure level and a temperature of 105°K for the minimum temperature of the inversion level at 0.15 bars have been derived for gaseous absorption due to NH3, H2, and He. The overall fit to the brightness temperature as a function of frequency σ is within ±1°K for 100 ≤ σ ≤ 400 cm?1 except for the centers of the NH3 rotation-inversion manifolds where for J ≥ 7 the fit is about 5°K too high. In the continuum for 400 ≤ σ ≤ 630 cm?1 the fit is within 2.5°K. Consideration of an ammonia ice haze, photodissociation of NH3 by uv radiation, NH3 abundance variation, different He/H2 ratios, and uncertainties in the data effect the temperatures at 1 bar and the temperature at the inversion layer by <7°K. The presently derived temperature at 1 bar of 160°K is consistent with Jovian interior models which can match the gravitational moment, J2.  相似文献   

19.
《Icarus》1986,67(3):391-408
The evolution of the giant planets is calculated under the general hypothesis that the solid cores formed first, by accretion of small particles, and that these cores later gravitationally attracted their gaseous envelopes from the solar nebula. The evolution passes through the following phases. (1) Planetesimals accrete to form a core of rocky and icy material. (2) When the core mass has grown to a few tenths of an Earth mass, a gaseous envelope in hydrostatic equilibrium begins to form around the core. (3) The core and envelope continue to grow until the “critical” core mass is reached, beyond which point the envelope increases in mass much more rapidly than the core. (4) The envelope mass increases quickly to its present value and prodices a relatively high luminosity, derived from gravitational contraction. (5) Accretion of both core and envelope terminates, and the planet contracts and cools to its present state on a time scale of 5 × 109 years. Evolutionary calculations of phases (2) through (5) are presented, based on solutions of the time-dependent stellar structure equations in spherical symmetry. The physical considerations that determine the critical core mass are discussed; its value is found to depend strongly on the core accretion rate but only weakly on surface boundary conditions. Evolutionary tracks up to the present state are presented for objects of Uranus and Saturn mass.  相似文献   

20.
Abstract— Phase diagrams describing solid-gas equilibria in the system Fe-Mg-Si-O-C-H under H-rich conditions (~700–2000 K and 10?2–10?20 atm of Ph 2), including solar nebula conditions, were constructed based on thermochemical calculations. Boundaries of vaporous phases, which are the first phases to condense from a gas, can be obtained without calculating condensation temperatures of individual gas compositions because the numbers of major gaseous species are the same as those of components in the concerned systems. Fractionations by condensation and/or evaporation can be discussed easily in such phase diagrams. A thermal divide, which is a barrier that vapors cannot cross by a single cooling process, was recognized in the phase diagrams. This is present on the Fe-MgO-SiO2-CO-H plane at high temperatures (≥500–700 K) and plays an important role in fractionations. Oxidizing states of ordinary chondrites and carbonaceous chondrites before aqueous alteration are located at the O-rich side of the thermal divide. Such oxidizing states can be formed from the solar gas by fractionation in the primordial solar nebula because the solar composition is located on the O-rich side. On the other hand, the reducing states of enstatite chondrites, located at the O-poor side, cannot be formed as long as the thermal divide is present. The reducing states can be obtained by CO to CH4 molecular reaction at low temperatures (≤500–700 K), where the high-temperature thermal divide is absent. Addition of H2O-rich and CH4-rich ice can explain establishment of the redox states of ordinary and enstatite chondrites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号