首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We discuss the application of meridionally self-similar models to winds and jets from hot coronae, in particular in the central region of accretion disks. A summary of how they may help understanding the evolution of jets from young stars is outlined. Then we discuss their application to the classification of AGN jets and extension to the relativistic regime of these exact axisymmetric solutions. Finally we discuss how it is possible to extend the polytropic equation of state and Parker winds to the relativistic regime to have a simple toy model for understanding thermal acceleration.  相似文献   

2.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

3.
In this proceeding I present recent works dealing with magnetohydrodynamic (MHD) simulations describing resistive accretion disks continuously launching large-scale, self-collimated MHD jets. In particular, I discuss the physical conditions required to produce these outflows and the related numerical issues. As an illustration I also present axisymmetric MHD numerical simulations of such accretion-ejection engines, demonstrating the mechanism controlling these flows.  相似文献   

4.
In this contribution, we first review the theory of self-collimated jets launched from magnetized accretion disks (disk-winds originating from the first AUs). We show why it is crucial to solve in a self-consistent way the interplay between the resistive accretion disk and the ideal MHD jets. Indeed, this is the only way to get exact values for the disk ejection efficiency ξ (the jet mass load issue). Then, we show self-similar calculations of such accretion-ejection structures: first cold jets, then warm jets obtained in the presence of a hot disk chromosphere. Finally, we present for the first time an accretion-ejection flow crossing all three critical points.  相似文献   

5.
The normal mode oscillations of thin accretion disks around black holes and other compact objects are analyzed and contrasted with those in stars. For black holes, the most robust modes are gravitationally trapped near the radius at which the radial epicyclic frequency is maximum. Their eigenfrequencies depend mainly on the mass and angular momentum of the black hole. The fundamental g-mode has recently been seen in numerical simulations of black hole accretion disks. For stars such as white dwarfs, the modes are trapped near the inner boundary (magnetospheric or stellar) of the accretion disk. Their eigenfrequencies are approximately multiples of the (Keplerian) angular velocity of the inner edge of the disk. The relevance of these modes to the high frequency quasi-periodic oscillations observed in the power spectra of accreting binaries will be discussed. In contrast to most stellar oscillations, most of these modes are unstable in the presence of viscosity (if the turbulent viscosity induced by the magnetorotational instability acts hydrodynamically).  相似文献   

6.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

7.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

8.
It has been two decades since astronomers first discovered that accretion disks around young stars drive highly collimated supersonic jets. Thanks to concerted efforts to understand emission line ratios from jets, we know that velocity variations dominate the heating within these flows, and motions in stellar jets, now observed in real time, are primarily radial. The fluid dynamics of the cooling zones can be complex, with interacting shocks, clumps, and instabilities that could benefit from insights into the physics that only experiments can provide. Recent laboratory experiments have reproduced jets with velocities and Mach numbers similar to those within stellar jets, and the field seems poised to make significant advances by connecting observations and theories with experiments. This article points out several aspects of stellar jets that might be clarified by such experiments.  相似文献   

9.
Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.  相似文献   

10.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

11.
Energetic outflows provide a dramatic accompaniment to accretion disks in all stages of star formation. The low extinction toward Classical T Tauri stars offers an opportunity to probe the star-disk interface region to search for the launch site and acceleration region of accretion-driven winds. This search is complicated by the fact that the dominant sources of emission in the optical and ultraviolet are the funnel flows and accretion shocks associated with magnetospheric accretion. Thus the quest for inner wind diagnostics requires disentangling accretion and outflow processes from the same line profile. We discuss two tracers of a high velocity inner wind in stars with high disk accretion rates. One, a hot component, is traced by helium emission and must arise very close to the star. A second, cooler component, is traced by blueshifted absorption in strong resonance lines and arises further from the star, but still within about ten stellar radii. We present evidence that the character of both magnetospheric accretion and the inner wind may differ among stars with high and low disk accretion rates.  相似文献   

12.
The evolution of protoplanetary disks around young stars is briefly reviewed. The most important physical mechanisms that drive the mass accretion are gravitational, magnetic, and thermal convective instabilities. These mechanisms are dominant in different regions of the disk and at different evolutionary epochs.  相似文献   

13.
I review the most recent results obtained in numerical simulations of jets from accretion disks, with specific reference to the phases of acceleration, propagation and termination. The approximations adopted, both in the physics and the numerical methods, are pointed out and possible developments are suggested.  相似文献   

14.
This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz and Klu’zniak (2001). In a first paper (P'etri, 2005a, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. After a discussion on the magnitude of this deformation applied to neutron stars, we show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to {three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric resonance}. In a second part, we focus on the linear response of a thin accretion disk in the 2D limit. {Waves are launched at the aforementioned resonance positions and propagate in some permitted regions inside the disk, according to the dispersion relation obtained by a WKB analysis}. In a last part, these results are confirmed and extended via non linear hydrodynamical numerical simulations performed with a pseudo-spectral code solving Euler's equations in a 2D cylindrical coordinate frame. {We found that for a weak potential perturbation, the Lindblad resonance is the only effective mechanism producing a significant density fluctuation}. In a last step, we replaced the Newtonian potential by the so called logarithmically modified pseudo-Newtonian potential in order to take into account some general-relativistic effects like the innermost stable circular orbit (ISCO). The latter potential is better suited to describe the close vicinity of a neutron star or a black hole. However, from a qualitative point of view, the resonance conditions remain the same. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.  相似文献   

15.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.  相似文献   

16.
Protostellar jets and winds are probably driven magnetocentrifugally from the surface of accretion disks close to the central stellar objects. The exact launching conditions on the disk, such as the distributions of magnetic flux and mass ejection rate, are poorly known. They could be constrained from observations at large distances, provided that a robust model is available to link the observable properties of the jets and winds at the large distances to the conditions at the base of the flow. We describe a set of 2D axisymmetric simulations that are able to follow the acceleration and propagation of the wind from the disk surface to arbitrarily large distances. After a typical 2D flow reaches the steady state, we impose on it nonaxisymmetric perturbations and follow numerically its 3D evolution. We find that the wind reverts quickly to its initial axisymmetric state, with no indication of rapid growth of instabilities leading to flow disruption. Our calculations strengthen the case for the magnetocentrifugal jet and wind launching.  相似文献   

17.
We present the MHD simulation including accretion flows in disks, acceleration of outflows from disks, and collimation of the outflows self-consistently. Although it was considered that this kind of simulations only shows the transient phenomena of jets, we found that the outflow and accretion flow reached a quasi-steady state by performing a long-term calculation in a large calculation region. Though the final stage is not exactly the steady state, the acceleration and collimation mechanisms of the outflow were the same as those of the steady theory. The scale of the calculation is approaching to the scale that was observed by the VLBI technique, which provides the current highest resolution for YSO jets.  相似文献   

18.
It is commonly accepted that stars form in molecular clouds by the gravitational collapse of dense gas. However, it is precisely not the infalling but the outflowing material that is primarily observed. Outflow motions prevail around both low and high mass young stellar objects. We present here results from a family of self-similar models that could possibly help to understand this paradox. The models take into account the heating of the central protostar for the deflection and acceleration of the gas. The models make room for all the ingredients observed around the central objects, i.e. molecular outflows, fast jets, accretion disks and infalling envelopes. We suggest that radiative heating and magnetic field may ultimately be the main energy sources driving outflows for both low and high mass stars. The models show that the ambient medium surrounding the jet is unhomogeneous in density, velocity, magnetic field. Consequently, we suggest that jets and outflows have a prehistory that is inprinted in their environment, and that this should have direct consequences on the setting of jet numerical simulations.  相似文献   

19.
We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact velocities, this takes an order of magnitude more time than that needed for the formation of a dense nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We investigate in this contribution emissivity properties of the [Fe ii] near-IR lines and their application to the study of jets in young stars. We report a model-independent method to determine the gas phase abundance in jets. Then, we present synthetic maps deduced from a recent self-consistent MHD cold disk wind model from which the thermal solution has been solved a posteriori. Kinematics is compared with observations in the [Fe ii] near-IR lines of L1551-IRS5. General kinematical behaviour is well reproduced, the existence of two velocity components in particular. However, we note a relative deficit in emission at intermediate velocity as observed in the jets from optically visible T Tauri stars. We examine predicted rotation signatures for various types of MHD disk winds. Compared to observations of DG Tau, warm disk winds reproduce quite well observed velocity shifts, whereas cold solutions predict too high toroidal velocities by a factor 2–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号