首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of mass-losing very massive stars in the 500–10000M range has been investigated for two different initial compositions, (X, Z)=(0.8,0.0) and (X, Z)=(1.0,0.0). The evolutionary tracks are governed by two opposing factors which are the increase in the mean molecular weight in the convective core and the effect of mass loss. Conservative evolution of stars with massM?10000M is similar to that of massive stars (20–100M ), always moving to lower effective temperatures. For low values of the standard mass loss parameterN (50?N?200) the two opposing factors are almost in balance and the star is forced to move in a series of loops. For higher mass loss rates the loops disappear. In the 10000M case no loops are observed and the tracks always move to higher effective temperatures. For a given mass loss rate the transition between right and left moving tracks occurs at higher masses the lower is the mass loss rate.  相似文献   

2.
New computations of massive stars follow the evolution up to advanced stages and include:
  • -A large and flexible nuclear network consisting of 174 nuclear species that are linked by 1742 nuclear reactions.
  • -Semiconvection, overshooting and mass loss.
  • -Modern rates for both strong and weak interaction processes as well as the latest rates for the neutrino processes.
  • -Improved grid distribution and a large number of grid points.
  • The nuclear network and the diffusion equation are solved for each time step during the whole evolution. In this way the accuracy of nuclear yields and chemical abundances are mainly limited by uncertainties in the diffusion coefficient found from the convection theories. Several instability mechanisms may affect the mass loss rates of massive stars and thereby the structure and abundances of WR stars. Due to heavy mass loss at the LBV and WR stages, the masses at the pre-SN stage may be less than 5M . Yields and abundances throughout the stars are discussed together with the amount of all elements expelled.  相似文献   

    3.
    We investigate the possibility that gravity modes can be stochastically excited by turbulent convection in massive main-sequence (MS) stars. We build stellar models of MS stars with masses M=10?M ,15?M , and 20?M . For each model, we then compute the power supplied to the modes by turbulent eddies in the convective core (CC) and the outer convective zones (OCZ). We found that, for asymptotic gravity modes, the major part of the driving occurs within the outer iron convective zone, while the excitation of low n order modes mainly occurs within the CC. We compute the mode lifetimes and deduce the expected mode amplitudes. We finally discuss the possibility of detecting such stochastically-excited gravity modes with the CoRoT space-based mission.  相似文献   

    4.
    We consider the evolution of a rotating star with a mass of 16M and an angular momentum of 3.25 × 1052 g cm2 s?1, along with the hydrodynamic transport of angular momentum and chemical elements in its interiors. When the partial mixing of matter of the turbulent radiative envelope and the convective core is taken into account, the efficiency of the angular momentum transport by meridional circulation in the stellar interiors and the duration of the hydrogen burning phase increase. Depending on the Schmidt number in the turbulent radiative stellar envelope, the ratio of the equatorial rotational velocity to the circular one increases with time in the process of stellar evolution and can become typical of early-type Be stars during an additional evolution time of the star on the main sequence. Partial mixing of matter is a necessary condition under which the hydrodynamic transport processes can increase the angular momentum of the outer stellar layer to an extent that the equatorial rotational velocity begins to increase during the second half of the evolutionary phase of the star on the main sequence, as shown by observations of the brightest stars in open star clusters with ages of 10–25 Myr. When the turbulent Schmidt number is 0.4, the equatorial rotational velocity of the star increases during the second half of the hydrogen burning phase in the convective core from 330 to 450 km s?1.  相似文献   

    5.
    The main results of a study of a catalogue of physical parameters of 1041 spectroscopic binaries are presented. The distribution of spectroscopic binaries over all main parametersM 1, a, e, M1/M2, P, and certain dependencies between some of them have been found.
    1. It appears that among bright (m v?3 m –5 m ) stars withM?1M , about 40% are apparently spectroscopic binaries with comparable masses of components.
    2. The majority of spectroscopic binaries with the ratio of the large semiaxis of the orbit to the radius of the primarya/R 1?20, have eccentricities close to zero. This is probably a consequence of the tidal circularization of orbits of close binaries by viscous friction.
    3. The discovery of duplicity of double-line spectroscopic binaries is possible only if the semiamplitude of radial velocityK 1 is almost 10 times higher than the semiamplitude of the radial velocity of a single-line spectroscopic binary of the same mass.
    4. Double-line spectroscopic binaries witha/R ?6(M 1/M )1/3,M 1M 2?1.5M are almost almost absent, and the number of stars witha/R ?6(M 1/M )1/3,M 1≈1.5M is relatively low.
    5. The distribution of unevolved SB stars over the large semiaxis may be described by the expression d(N d/Nt)≈0.2 d loga for 6(M 1/M )1/3?a/R ?100.
    6. The intial mass-function for primaries of spectroscopic binaries is the same Salpeter function dN d≈M 1 ?2.35 dM 1 for 1?M 1/M ?30.
    7. It is possible to explain the observed ratio of the number of single-line spectroscopic binaries to the number of double-line binaries if one assumes that the average initial mass ratio is close to 1 and that the mass of the postmass-exchange remnant of the primary exceeds the theoretical one and/or that half of the angular momentum of the system is lost during mass-exchange.
    8. The above-mentioned distributions ofM 1 anda and assumptions on the mass of remnant and/or momentum loss also allow us to explain the observed shapes of dN/dM, dN/dq, and dN/da distributions after some selection effects are taken into account.
      相似文献   

    6.
    7.
    《New Astronomy》2007,12(2):95-103
    Low metallicity very massive stars with an initial mass between 140M and 260M can be subdivided into two groups: those between 140M and 200M which produce a relatively small amount of Fe, and those with a mass between 200M and 260M where the Fe-yield ejected during the supernova explosion is enormous. We first demonstrate that the inclusion of the second group into a chemical evolutionary model for the Solar Neighbourhood predicts an early temporal evolution of Fe, which is at variance with observations whereas it cannot be excluded that the first group could have been present. We then show that a low metallicity binary with very massive components (with a mass corresponding to the first group) can be an efficient site of primary 14N production through the explosion of a binary component that has been polluted by the pair instability supernova ejecta of its companion. When we implement these massive binary 14N yields in a chemical evolution model, we conclude that very massive close binaries may be important sites of 14N enrichment during the early evolution of the Galaxy.  相似文献   

    8.
    The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

    9.
    《New Astronomy Reviews》2002,46(8-10):463-468
    We present a nucleosynthesis calculation of a 25 M star of solar composition that includes all relevant isotopes up to polonium. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a ‘piston’ approach. We discuss the influence of two key nuclear reaction rates, 12C(α, γ)16O and 22Ne(α, n)25Mg, on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.  相似文献   

    10.
    In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with   N ∼ 105  particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster.  相似文献   

    11.
    The evolution of Population I stars with initial masses 70M M ZAMS ≤ 130M is considered. The computations were performed under various assumptions about the mass loss rate and were terminated at the phase of gravitational contraction after core helium exhaustion. The mass loss rate at the helium burning phase, ?3α , is shown to be the main parameter that determines the coefficients of the mass—luminosity relation for Wolf—Rayet stars. Several more accurate mass—luminosity relations for mass loss rates ? = f 3α ?3α , where 0.5 ≤ f 3α ≤ 3, are suggested, along with the mass—luminosity relation that combines all of the evolutionary sequences considered. The results of the stellar evolution computations were used as initial conditions in solving the hydrodynamic equations describing the spherically symmetric motions of a self-gravitating gas. The outer layers of massive Population I stars are unstable against radial oscillations throughout the helium burning phase. The oscillation amplitude is largest at enhanced carbon and oxygen abundances in the outer stellar layers, i.e., at a lower initial stellar mass M ZAMS or a lower mass loss rate during the entire preceding evolution. In the course of evolution, the radial oscillation amplitude decreases and the small nonlinearity of the oscillations at M < 10M allow the integral of mechanical work W done by an elementary spherical layer of gas in a closed thermodynamic cycle to be calculated with the necessary accuracy. The maximum of the radial dependence of W is shown to be located in layers with a gas temperature T ~ 2 × 105 K, where the oscillations are excited by the iron Z-bump κ-mechanism. Comparison of the radial dependences of the integral of mechanical work W and the amplitude of the radiative flux variations suggests that the nonlinear radial oscillations of more massive Wolf—Rayet stars are also excited by the κ-mechanism.  相似文献   

    12.
    We present a detailed investigation of X-ray source contents of eight young open clusters with ages between 4 to 46 Myr using archival X-ray data from XMM-Newton. The probable cluster memberships of the X-ray sources have been established on the basis of multi-wavelength archival data, and samples of 152 pre-main sequence (PMS) low mass (<2M ), 36 intermediate mass (2–10M ) and 16 massive (>10M ) stars have been generated. X-ray spectral analyses of high mass stars reveal the presence of high temperature plasma with temperature <2 keV, and mean L X/L bol of 10???6.9. In the case of PMS low mass stars, the plasma temperatures have been found to be in the range of 0.2 keV to 3 keV with a median value of ~1.3 keV, with no significant difference in plasma temperatures during their evolution from 4 to 46 Myr. The X-ray luminosity distributions of the PMS low mass stars have been found to be similar in the young star clusters under study. This may suggest a nearly uniform X-ray activity in the PMS low mass stars of ages ~4–14 Myr. These observed values of L X/L bol are found to have a mean value of 10??3.6±0.4, which is below the X-ray saturation level. The L X/L bol values for the PMS low mass stars are well correlated with their bolometric luminosities, that implies its dependence on the internal structure of the low mass stars. The difference between the X-ray luminosity distributions of the intermediate mass stars and the PMS low mass stars has not been found to be statistically significant. Their L X/L bol values, however have been found to be significantly different from each other with a confidence level greater than 99.999% and the strength of X-ray activity in the intermediate mass stars is found to be lower compared to the low mass stars. However, the possibility of X-ray emission from the intermediate mass stars due to a low mass star in close proximity of the intermediate mass star can not be ruled out.  相似文献   

    13.
    We report multi-wavelength observations towards IRAS 16547–4247, a luminous infrared source with a bolometric luminosity of 6.2 × 104 L . Dust continuum observations at 1.2-mm indicate that this object is associated with a dust cloud with a size of about 0.4 pc in diameter and a mass of about 1.3 × 103 M . Radio continuum observations show the presence of a triple radio source consisting of a compact central object and two outer lobes, separated by about 0.3 pc, symmetrically located from the central source. Molecular hydrogen line observations show a chain of knots that trace a collimated flow extending over 1.5 pc. We suggest that IRAS 16547–4247 corresponds to a dense massive core which hosts near its central region a high-mass star in an early stage of evolution. This massive YSO is undergoing the ejection of a collimated stellar wind which drives the H2 flow. The radio emission from the lobes arises in shocks resulting from the interaction of the collimated wind with the surrounding medium. We conclude that the thermal jets found in the formation of low-mass stars are also produced in high-mass stars.  相似文献   

    14.
    We present a model for the formation of massive ( M ≳10 M⊙) stars through accretion-induced collisions in the cores of embedded dense stellar clusters. This model circumvents the problem of accreting on to a star whose luminosity is sufficient to reverse the infall of gas. Instead, the central core of the cluster accretes from the surrounding gas, thereby decreasing its radius until collisions between individual components become sufficient. These components are, in general, intermediate-mass stars that have formed through accretion on to low-mass protostars. Once a sufficiently massive star has formed to expel the remaining gas, the cluster expands in accordance with this loss of mass, halting further collisions. This process implies a critical stellar density for the formation of massive stars, and a high rate of binaries formed by tidal capture.  相似文献   

    15.
    From a comparative study between stellar and gas data it is seen that turbulent and hydrodynamic motions in the Galaxy are common to both types of materials:
    1. Galactic clusters have sizes and intrinsic dispersions compatible with the modified form of the Kolmogorov law seen in molecular clouds: undimensional velocities σ(km s?1)=0.54d 0.38 (pc). This indicates that ‘typic’ clusters were born from ‘typic’ dark clouds as these of the Lynds's catalogue (diametersd<10 pc, dispersions σ<1.5 km s?1 hydrogen densitiesn H>200 atom cm?3). These clouds have mass enough to form galactic clusters (1000–3000M ).
    2. The cluster formation is related to the supersonic range of the Kolmogorov relationship σ(d>1 pc) while the AFGKM stars are related to the subsonic range of the same relationship σ(d<0.3 pc), the intermediate transition zone is probably related to OB stars and/or trapezia.
    3. The effects of the magnetic fields in the clouds are also discussed. It seems to be that in the clouds the magnetic energy does not exceed the kinetic energy (proportional toσ 2(d)) and that this determinates the freezing criteria. The hypotheses introduced here can be checked with 21 cm Zeeman splitting.
    4. Low-density globular clusters are also coherent with the Kolmogorov relationship. Some hypotheses about their origin and the type of clouds where they were born are discussed. This last part of the study lets open the possibility of further studies about evolution of globular clusters.
      相似文献   

    16.
    We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope. We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M ) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.  相似文献   

    17.
    We present a multiwavelength study of the formation of massive stellar clusters, their emergence from cocoons of gas and dust, and their feedback on surrounding matter. Using data that span from radio to optical wavelengths, including Spitzer and Hubble Space Telescope ACS observations, we examine the population of young star clusters in the central starburst region of the irregular Wolf–Rayet galaxy IC4662. We model the radio-to-infrared (IR) spectral energy distributions of embedded clusters to determine the properties of their Hii regions and dust cocoons (sizes, masses, densities, temperatures), and use near-IR and optical data with mid-IR spectroscopy to constrain the properties of the embedded clusters themselves (mass, age, extinction, excitation, abundance). The two massive star-formation regions in IC4662 are excited by stellar populations with ages of ~4 Myr and masses of ~3×105 M (assuming a Kroupa initial mass function). They have high excitation and subsolar abundances, and they may actually be comprised of several massive clusters rather than the single monolithic massive compact objects known as ‘super star clusters’ (SSCs). Mid-IR spectra reveal that these clusters have very high extinction values, A V ~20–25 mag, and that the dust in IC4662 is well mixed with the emitting gas, not in a foreground screen.  相似文献   

    18.
    The Galactic open cluster Westerlund 1 (Wd 1) represents the ideal local template for extragalactic young massive star clusters, because it is currently the only nearby young cluster with a mass of ~105?M. Its proximity makes spatially resolved studies of its stellar population feasible, and additionally permits direct comparison of its properties with measurements of velocity dispersion and dynamical mass for spatially unresolved extragalactic clusters. Recently, we published the dynamical mass estimate based on spectra of four red supergiants. We have now identified six additional stars which allow a determination of radial velocity from the wavelength covered in our VLT/ISAAC near-infrared spectra (CO bandhead region near 2.29 μm), significantly improving statistics. Using a combination of stepping and scanning the slit across the cluster center, we covered an area which included the following suitable spectral types: four red supergiants, five yellow hypergiants, and one B-type emission-line star. Our measured velocity dispersion is 9.2 km?s?1. Together with the cluster size of 0.86 pc, derived from archival near-infrared SOFI-NTT images, this yields a dynamical mass of 1.5×105 M. Comparing this to the mass derived via photometry, there is no indication that the cluster is currently undergoing dissolution.  相似文献   

    19.
    We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

    20.
    Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5 M M ZAMS ≤ 13 M , chemical composition X = 0.7, Z = 0.02 and periods 1.5 day ≤ Π ≤ 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin-Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of \(\dot \Pi\) noticeably exceeds the width of the band \(\left( {\delta \log \left| {\dot \Pi } \right| \leqslant 0.6} \right)\) confining evolutionary tracks in the period-period change rate diagram. One of the causes of the large scatter with very high values of \(\dot \Pi\) in Cepheids with increasing periods might be the stars that cross the instability strip for the first time. Their fraction ranges from 2% for M ZAMS = 5.5 M to 9% for M ZAMS = 13 M and variables α UMi and IX Cas seem to belong to such objects.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号