首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to assess the contribution of Lyman break galaxies (LBGs) and Lyman α emitters (LAEs) at redshifts  3 < z < 7  to the ionization of intergalactic medium (IGM), we investigate the escape fractions of ionizing photons from supernova-dominated primordial galaxies by solving the three-dimensional (3D) radiative transfer. The model galaxy is employed from an ultra-high-resolution chemodynamic simulation of a primordial galaxy by Mori & Umemura, which well reproduces the observed properties of LAEs and LBGs. The total mass of model galaxy is  1011 M  . We solve not only photoionization but also collisional ionization by shocks. In addition, according to the chemical enrichment, we incorporate the effect of dust extinction, taking the size distributions of dust into account. As a result, we find that dust extinction reduces the escape fractions by a factor of 1.5–8.5 in the LAE phase and by a factor of 2.5–11 in the LBG phase, while the collisional ionization by shocks increases the escape fractions by a factor of  ≈2  . The resultant escape fractions are 0.07–0.47 in the LAE phase and 0.06–0.17 in the LBG phase. These results are well concordant with the recent estimations derived from the flux density ratio at 1500 to 900 Å of LAEs and LBGs. Combining the resultant escape fractions with the luminosity functions of LAEs and LBGs, we find that high- z LAEs and LBGs can ionize the IGM at   z = 3–5  . However, ionizing radiation from LAEs as well as LBGs falls short of ionizing the IGM at   z > 6  . That implies that additional ionization sources may be required at   z > 6  .  相似文献   

2.
Early reionization of the intergalactic medium (IGM), which is favoured from the WMAP temperature–polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter (CDM) cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as a very high escape fraction of ionizing photons from protogalaxies or a top-heavy initial mass function (IMF). Here, we propose an alternative scenario that additional fluctuations on small scales induced by primordial magnetic fields trigger early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the Universe by   z ≃ 15  if the strength of primordial magnetic fields is between 0.7 and  1.5 × 10−9 G  .  相似文献   

3.
We study the implications of primordial magnetic fields for the thermal and ionization history of the post-recombination era. In particular, we compute the effects of dissipation of primordial magnetic fields owing to ambipolar diffusion and decaying turbulence in the intergalactic medium (IGM) and the collapsing haloes, and compute the effects of the altered thermal and ionization history on the formation of molecular hydrogen. We show that, for magnetic field strengths in the range  2 × 10−10≲ B 0≲ 2 × 10−9 G  , the molecular hydrogen fraction in IGM and collapsing halo can increase by a factor of 5 to 1000 over the case with no magnetic fields. We discuss the implication of the increased molecular hydrogen fraction on the radiative transfer of ultraviolet photons and the formation of first structures in the universe.  相似文献   

4.
We study the statistical properties of the cosmological 21-cm signal from both the intergalactic medium (IGM) and minihaloes, using a reionization simulation that includes a self-consistent treatment of minihalo photoevaporation. We consider two models for minihalo formation and three typical thermal states of the IGM – heating purely by ionization, heating from both ionizing and Lyα photons and a maximal 'strong heating' model. We find that the signal from the IGM is almost always dominant over that from minihaloes. In our calculation, the differential brightness temperature,  δ T b,  of minihaloes is never larger than 2 mK. Although there are indeed some differences in the signals from the minihaloes and from the IGM, even with the planned generation of radio telescopes it will be unfeasible to detect them. However, minihaloes significantly affect the ionization state of the IGM and the corresponding 21-cm flux.  相似文献   

5.
I review here a few important questions that X‐shooter can help tackle and answer in the field of quasar absorption lines. This includes (i) determine the ionizing background and the physical state of the inter‐galactic medium (IGM) by analysing the characteristics of the Lyman‐α forest and the proximity effect; (ii) investigate the metal content of the high redshift IGM; (iii) study the small scale transverse correlation in the IGM by observing pairs of quasars with small separation in the sky; (iv) study the galaxy‐IGM relations by detecting the counterpart of damped Lyman‐α systems (DLAs) or determining the correlation between the properties of galaxies and absorption lines; (v) detect and characterize the long‐sought cold diffuse molecular (H2 and CO) interstellar medium (ISM) of high redshift galaxies and study its dust content (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

7.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

8.
Reionization is thought to be dominated by low-mass galaxies, while direct observations of resolved galaxies probe only the most massive, rarest objects. The cross-correlation between fluctuations in the surface brightness of the cumulative Lyα emission (which serves as a proxy for the star formation rate) and the redshifted 21-cm signal from neutral hydrogen in the intergalactic medium (IGM) will directly probe the causal link between the production of ionizing photons in galaxies and the reionization of the IGM. We discuss the prospects for detecting this cross-correlation for unresolved galaxies. We find that on angular scales ≲10 arcmin detection will be practical using wide-field near-infrared (near-IR) imaging from space in combination with the forthcoming Mileura Wide-field Array – Low Frequency Demonstrator. When redshifted 21-cm observations of the neutral IGM are combined with space-based near-IR imaging of Lyα emission, the detection on angular scales ≲3 arcmin will be limited by the sensitivity of the 21-cm signal, even when a small-aperture optical telescope (∼2 m) and a moderate field of view (∼10 deg2) are used. On scales ≳3 arcmin, the measurement of cross-correlation will be limited by the accuracy of the foreground sky subtraction.  相似文献   

9.
H2 formation in metal-free gas occurs via the intermediate  H  or  H+2  ions. Destruction of these ions by photodissociation therefore serves to suppress  H2  formation. In this paper, I highlight the fact that several processes that occur in ionized primordial gas produce photons energetic enough to photodissociate  H  or  H+2  and outline how to compute the photodissociation rates produced by a particular distribution of ionized gas. I also show that there are circumstances of interest, such as during the growth of H  ii regions around the first stars, in which this previously overlooked form of radiative feedback is of considerable importance.  相似文献   

10.
A simple analytical model is used to calculate the X-ray heating of the intergalactic medium (IGM) for a range of black hole masses. This process is efficient enough to decouple the spin temperature of the IGM from the cosmic microwave background (CMB) temperature and produce a differential brightness temperature of the order of ∼ 5–20 mK out to distances as large as a few comoving Mpc, depending on the redshift, black hole mass and lifetime. We explore the influence of two types of black holes, those with and without ionizing ultraviolet radiation. The results of the simple analytical model are compared to those of a full spherically symmetric radiative transfer code. Two simple scenarios are proposed for the formation and evolution of black hole mass density in the Universe. The first considers an intermediate mass black hole that form as an end-product of pop III stars, whereas the second considers supermassive black holes that form directly through the collapse of massive haloes with low spin parameter. These scenarios are shown not to violate any of the observational constraints, yet produce enough X-ray photons to decouple the spin temperature from that of the CMB. This is an important issue for future high-redshift 21-cm observations.  相似文献   

11.
Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25–500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.  相似文献   

12.
Recent results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite suggest that the intergalactic medium (IGM) was significantly reionized at redshifts as high as   z ∼ 17  . At this early epoch, the first ionizing sources probably appeared in the shallow potential wells of mini-haloes with virial temperatures   T vir < 104 K  . Once such an ionizing source turns off, its surrounding H ii region Compton cools and recombines. None the less, we show that the 'fossil' H ii regions left behind remain at high adiabats, prohibiting gas accretion and cooling in subsequent generations of mini-haloes. This greatly amplifies feedback effects explored in previous studies, and early star formation is self-limiting. We quantify this effect to show that star formation in mini-haloes cannot account for the bulk of the electron scattering opacity measured by WMAP , which must be due to more massive objects. We argue that gas entropy, rather than IGM metallicity, regulates the evolution of the global ionizing emissivity and impedes full reionization until lower redshifts. We discuss several important consequences of this early entropy floor for reionization. It reduces gas clumping, curtailing the required photon budget for reionization. An entropy floor also prevents H2 formation and cooling, due to reduced gas densities: it greatly enhances feedback from ultraviolet photodissociation of H2. An early X-ray background would also furnish an entropy floor to the entire IGM; thus, X-rays impede rather than enhance H2 formation. Future 21-cm observations may probe the topology of fossil H ii regions.  相似文献   

13.
To explain the effects of the ultraviolet (UV) background radiation on the collapse of pre-galactic clouds, we implement a radiation–hydrodynamical calculation, combining one-dimensional spherical hydrodynamics with an accurate treatment of the radiative transfer of ionizing photons. Both absorption and scattering of UV photons are explicitly taken into account. It turns out that a gas cloud contracting within the dark matter potential does not settle into hydrostatic equilibrium, but undergoes run-away collapse even under the presence of the external UV field. The cloud centre is shown to become self-shielded against ionizing photons by radiative transfer effects before shrinking to the rotation barrier. Based on our simulation results, we further discuss the possibility of H2 cooling and subsequent star formation in a run-away collapsing core. The present results are closely relevant to the survival of subgalactic Population III objects as well as to metal injection into intergalactic space.  相似文献   

14.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   

15.
16.
17.
We investigate the effects of non-Gaussianity in the primordial density field on the reionization history. We rely on a semi-analytic method to describe the processes acting on the intergalactic medium (IGM), relating the distribution of the ionizing sources to that of dark matter haloes. Extending previous work in the literature, we consider models in which the primordial non-Gaussianity is measured by the dimensionless non-linearity parameter f NL, using the constraints recently obtained from cosmic microwave background data. We predict the ionized fraction and the optical depth at different cosmological epochs assuming two different kinds of non-Gaussianity characterized by a scale-independent and a scale-dependent f NL and comparing the results to those for the standard Gaussian scenario. We find that a positive f NL enhances the formation of high-mass haloes at early epochs when reionization begins, and, as a consequence, the IGM ionized fraction can grow by a factor of up to 5 with respect to the corresponding Gaussian model. The increase of the filling factor has a small impact on the reionization optical depth and is of the order of ∼10 per cent if a scale-dependent non-Gaussianity is assumed. Our predictions for non-Gaussian models are in agreement with the latest Wilkinson Microwave Anisotropy Probe results within the error bars, but a higher precision is required to constrain the scale dependence of non-Gaussianity.  相似文献   

18.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

19.
We study the reionization of He  ii by quasars using a numerical approach that combines 3D radiative transfer calculations with cosmological hydrodynamical simulations. Sources producing the ionizing radiation are selected according to an empirical quasar luminosity function, and are assigned luminosities according to their intrinsic masses. The free parameters associated with this procedure are (1) a universal source lifetime, (2) a minimum mass cut-off, (3) a minimum luminosity cut-off, (4) a solid angle specifying the extent to which radiation is beamed, and (5) a tail-end spectral index for the radiative energy distribution of the sources. We present models in which these parameters are varied, and examine characteristics of the resultant reionization process that distinguish the various cases. In addition, we extract artificial spectra from the simulations and quantify statistical properties of the spectral features in each model.
We find that the most important factor affecting the evolution of He  ii reionization is the cumulative number of ionizing photons that are produced by the sources. Comparisons between He  ii opacities measured observationally and those obtained by our analysis reveal that the available ranges in plausible values for the parameters provide enough leeway to provide a satisfactory match. However, one property common to all our calculations is that the epoch of He  ii reionization must have occurred at a redshift in the range  3≲ z ≲4  . If so, future observational programmes will be able to directly trace the details of the ionization history of helium and to probe the low-density phase of the intergalactic medium during this phase of the evolution of the Universe.  相似文献   

20.
《New Astronomy》2007,12(5):398-409
We develop a numerical solver for radiative transfer problems based on the weighted essentially nonoscillatory (WENO) scheme modified with anti-diffusive flux corrections, in order to solve the temperature and ionization profiles around a point source of photons in the reionization epoch. Algorithms for such simulation must be able to handle the following two features: (1) the sharp profiles of ionization and temperature at the ionizing front (I-front) and the heating front (T-front), and (2) the fraction of neutral hydrogen within the ionized sphere is extremely small due to the stiffness of the rate equations of atom processes. The WENO scheme can properly handle these two features, as it has been shown to have high order of accuracy and good convergence in capturing discontinuities and complicated structures in fluid as well as to be significantly superior over piecewise smooth solutions containing discontinuities. With this algorithm, we show the time-dependence of the preheated shell around a UV photon source. In the first stage the I-front and T-front are coincident, and propagate with almost the speed of light. In later stage, when the frequency spectrum of UV photons is hardened, the speeds of propagation of the ionizing and heating fronts are both significantly less than the speed of light, and the heating front is always beyond the ionizing front. In the spherical shell between the I- and T-fronts, the IGM is heated, while atoms keep almost neutral. The time scale of the preheated shell evolution is dependent on the intensity of the photon source. We also find that the details of the pre-heated shell and the distribution of neutral hydrogen remained in the ionized sphere are actually sensitive to the parameters used. The WENO algorithm can provide stable and robust solutions to study these details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号