首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this paper, Atterberg limits and hydraulic conductivity tests are performed in sand samples mixed with different amounts of silt, zeolite and bentonite. The testing liquids consist of kerosene, two paraffin oils with different viscosities, distilled water and 1, 10 and 1,000 mol/m3 calcium chloride solutions. Experimental results show that soils completely lost their plasticity when are in contact with light non-aqueous phase liquids, and that the liquid limit depends on the dynamic viscosity of the fluid surrounding the particles. Also, tested soils show different hydraulic conductivity with water before and after Ca2+ ions are introduced in the permeating fluid, in agreement with the change in the formation Gibbs free energy and diffuse double layer theory. Finally, the influence of viscosity ratio, specific surface of particles, soil fabric and PFI on hydraulic conductivity is discussed and related to the effective particle diameter and soil void ratio.  相似文献   

2.
The possibility of using crushed shales as landfill liners is investigated in this study. Two types of shales were studied by performing the following laboratory tests: hydraulic conductivity, compaction, swelling, consolidation, X-ray diffraction (XRD), scanning electron microscope (SEM) and chemical analysis. For both compacted shales, the hydraulic conductivity was in order of 10 7 cm/s or less which satisfies the specifications for landfill liners. The results of XRD and SEM support the low values of the hydraulic conductivity. Because of the dominant presence of low-activity kaolinite, there was no significant change in the hydraulic conductivity when the compacted shales are exposed to calcium chloride solution. The compressibility of the compacted clay was low and no serious post-construction settlement is expected. The shear strength of the compacted shales was within the usual expected range for earthen liners and, therefore, should pose no challenges with respect to shear strength. The crushed shales also satisfy the other criteria related to Atterberg limits and grain size.  相似文献   

3.
Large quantities of leachate-contaminated lateritic soil results from dump yards in the southwest coast of India. These dump yards receive large quantities of municipal solid waste which includes chemical, industrial and biomedical wastes. Large areas of land are currently being used for this purpose. An extensive laboratory testing program was carried out to determine the compaction characteristics and hydraulic conductivity of clean and contaminated lateritic soil. Batch tests were used to study the immediate effect of leachate contamination on the properties of lateritic soil. Contaminated specimens were prepared by mixing the lateritic soil with leachate in the amount of 5%, 10% and 20% by weight to vary the degree of contamination. The results indicated a small reduction in maximum dry density and an increase in hydraulic conductivity due to leachate-contamination. The change induced by chemical reaction in the microstructure of the soil was studied by scanning electron microscope before and after contamination of soil with leachate. The structure of the leachate contaminated soil sample appeared to be aggregated in scanning electron microscope analysis. The aggregated structure increases the effective pore space and thus increases the hydraulic conductivity. Fifty percent increase in hydraulic conductivity was observed for specimens prepared at standard Proctor density and mixed with 20% leachate. Compaction characteristics did not change much with the presence of leachate up to 10%. With 20% leachate the maximum dry density decreased slightly indicating excess leachate in the soil. However the changes are not significant.  相似文献   

4.
以人工制备的方法配制了不同氯盐含量的土样,并掺入不同含量的普通硅酸盐水泥对其进行固化处理。采用无侧限抗压强度试验对氯盐含量对水泥固化土的应力应变特征影响规律进行分析。试验结果表明:随着氯盐含量的增加,水泥固化土的无侧限抗压强度和变形模量降低,破坏应变随之增大,应力-应变关系曲线由脆性破坏向塑性破坏转化; 增加水泥用量可以减缓氯盐对水泥固化土的不良影响; 但水泥固化土变形模量与无侧限抗压强度的比值与氯盐含盐量大小无明显关系。  相似文献   

5.
When chemicals are introduced into the oil, they affect soil properties such as hydraulic conductivity and stress–strain behavior. In this study, several chloride concentrations are varied from 0 to 20 per cent to analyse the effect of chemicals on soil properties. A series of laboratory triaxial tests are performed on the cylindrical specimens of sand–bentonite mixture with different sodium chloride contents (5, 10, 15 per cent) by Nannapaneni. Deformation (elastic modulus, E) and strength (cohesion, c′, and angle of friction, ϕ′) parameters are obtained from the triaxial tests as functions of confining pressure and sodium chloride concentrations, and variations of parameters are incorporated into stability analysis. The stress–strain–strength behaviour based on the above strength parameters is introduced in a finite element procedure with a modified residual flow procedure (RFP). By integrating a slope stability procedure in the finite element method, the stability with time of earth dam contaminated by sodium chloride is examined. It is found that increasing sodium chloride concentration for the soil considered increases stability. However, the procedure is general and can allow stability analysis under the influence of other chemical which may lead to decrease in stability. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The southern coastal plain of Iran at the Persian Gulf encounters oil pollution due to the historical oil exploitation, related tanker navigations and accidents, and petrochemical industrial expansions in the recent years. Therefore, it is important to investigate the geochemical properties of oil-contaminated coastal soils and sediments for engineering and environmental purposes. Here, an extensive laboratory testing program was carried out to determine the effects of crude oil contamination on some of the geotechnical properties of clayey and sandy soils such as CL, SM and SP sampled from the coastal soils from this area. The testing included basic properties, Atterberg limits, compaction, direct shear, uniaxial compression and permeability tests on clean and contaminated soil samples at the same densities. The contaminated samples were prepared by mixing the soils with crude oil in the amount of 2%, 4%, 8%, 12%, and 16% by dry weight. The results indicated a decrease in strength, permeability, maximum dry density, optimum water content and Atterberg limits. Knowledge of these effects of oil contamination is important in coastal engineering and environmental remediation activities of the studied coastal plain.  相似文献   

7.
Waste management issue in mining industry has become increasingly important. In this regard, construction of tailings dams plays a major role. Most of the tailings dams require some kinds of remedial actions during their operational lifetime, among which heightening is the most common. In the first stage of the remedial provisions for Sarcheshmeh Copper Complex tailings dam in Iran, it has been decided to use hydrocyclone method to provide suitable construction material due to the high cost associated with using borrow materials for heightening of the dam. To undertake this project a series of laboratory experiments was performed to determine the copper ‘original tailings’ and ‘cycloned materials’ geotechnical characteristics to evaluate the applicability of the cycloned materials for construction purposes. Different laboratory experiments were conducted to determine the grain-size distribution, Atterberg limits, specific gravity, maximum density, shear strength parameters, consolidation coefficient, and hydraulic conductivity. The results were compared with those of similar mines to check whether they follow the trends observed in other copper tailing materials elsewhere. Variation of the cohesion and internal friction angle versus different compaction ratios were studied in order to determine realistic shear strength parameters for tailing dam stability analysis. In this study, using oedometer test, a mild linear relation between void ratio and the consolidation coefficient has been found for tailings materials. By considering the effects of void ratio and weight of passing sieve #200 materials, a new relationship is proposed that can be used for estimating the copper slimes hydraulic conductivity in seepage analysis of tailings dams.  相似文献   

8.
Absrtract This paper investigates the potential use of sand–attapulgite (palygorskite) mixtures as a landfill liner. The sand and attapulgite clay used in this study were brought from Wahiba (eastern Oman) and Al-Shuwamiyah (southern Oman), respectively. Initially the basic properties of the sand and clay were determined. Then the attapulgite clay was added to the sand at 5, 10, 20 and 30% by dry weight of the sand. The sand–attapulgite clay mixtures were subjected to mineralogical, chemical, microfabric and geotechnical analyses. The X-ray diffraction (XRD) qualitative analysis showed that attapulgite is the major clay mineral. The chemical compounds, exchangeable cations and cation exchange capacity (CEC) for the␣samples were determined. The CEC for the sand–clay mixtures is low but increases with the increase in clay content. The scanning electron microscope (SEM) examination showed that the addition of clay developed coating between and around the sand grains which results in filling the voids and reducing the hydraulic conductivity of the sand–clay mixtures. The hydraulic conductivity values for the pure clay and sand + 30% clay mixture prepared at 2% above optimum water content are slightly higher than hydraulic conductivity requirements for landfill liners but can be acceptable. The geotechnical study which included grain size distribution, Atterberg limits, specific gravity, compaction, hydraulic conductivity and shear strength tests showed that the sand+30% clay mixture prepared at 2% above optimum water content can be considered to satisfy the requirements for landfill liners. For all sand–clay mixtures no swelling was recorded and the addition of clay to the sand improved the shear strength.  相似文献   

9.
Successful design of soil liner and covers for landfills and waste impoundments involves selection of liner material and assessment of chemical compatibility of the liner material. In this work locally available materials with different mineralogy have been evaluated from the viewpoint of liner application. Many local soils may not meet the requirements of liner material; often it is necessary to amend these soils with commercially available processed bentonite. Clay liners may be attacked by chemical waste or leachate, concentrated organic chemicals can attack compacted clay effectively destroying the characteristics of liner material. Thus the main aim of this work has been to assess the suitability of different types of locally available materials for their potential use as liners for waste containment facilities. The materials studied are kaolinitic red earth, illite and fly ash. Based on literature survey and experimental work in this laboratory, 20% by weight of bentonite has been chosen for amending selected materials. Addition of 20% bentonite to selected liner material improved the hydraulic conductivity and adsorption capacity of the amended mixture but, reduced the volume stability. To improve the volume stability of the amended material and to have better resistance towards chemicals attack, stabilizing the amended mixture with 1% by weight of lime has been considered. The relative advantages and disadvantages of four materials namely; red earth with 20% bentonite, illite with 20% bentonite, fly ash with 20% bentonite and illite alone, stabilized with 1% by weight of lime were brought out. The chemical compatibility of the materials to electrolyte solution (0.5 N NaCl), alkaline solution (0.5 N NaOH), acid (0.5 N HCl) and organic fluid (CCl4) has been studied. The relative efficiency of the selected materials with selected pore fluids was compared.  相似文献   

10.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

11.
12.
非饱和土与饱和冻融土导湿系数的变化特征   总被引:2,自引:2,他引:2  
  相似文献   

13.
Due to significant variation in geological and climatic conditions the characteristics of lateritic soils vary from place to place. Because of the prevailing climatic conditions, the laterites and lateritic soils of a particular region may be different from those found in other parts of the world. Some investigators report that the pretest drying has significant effect on the properties of soils. In such studies the authors associate the effect of drying on the properties of soils due to the mineralogy of soil. From this context there is a need to investigate the effect of sample preparation on lateritic soils prior to testing. In the present study lateritic soils from different sources in west coast region of India were studied to investigate the effect of drying on their index properties. Due to pretest drying it is observed from the results that there is a significant change in Atterberg limits and other properties of soils tested. These changes are attributed due to aggregation of particles. The observed changes are found to be permanent.  相似文献   

14.
Hydraulic conductivity is a dominant parameter in the design of engineered waste disposal facilities such as landfill liners and covers, lagoon liners and slurry walls. It is of interest to a geotechnical or geo-environmental engineer to develop a predictive method of determining the hydraulic conductivity of fine-grained soils, in order to assess its suitability as a liner material. To predict the hydraulic conductivity of soils, researchers and geotechnical engineers have attempted to correlate it with index properties of the soils, such as the liquid limit, void ratio and specific surface. Based on the present study a predictive method has been developed in this paper to predict the hydraulic conductivity in terms of void ratio and shrinkage index (Liquid limit – shrinkage limit) for remoulded fine-grained soils. Though the initial conditions for the soil will affect the hydraulic conductivity behaviour to some extent, both the void ratio and soil characteristics are primary factors in affecting the hydraulic conductivity. Therefore for predictive purpose, the study of hydraulic conductivity behaviour of remoulded fine-grained soils as presented in this paper can be found to be useful for compacted soils also.  相似文献   

15.
Black cotton soil (BCS) deposits, stabilized with waste materials-wood-ash and organic matter (leaves, grass, etc.) exist in BCS areas of North Karnataka, India. These ash-modified soils (AMS) are apparently stabilized by hydrated lime produced by biochemical, dissolution, and hydration reactions. The influence of cyclic wetting and drying on the swelling behaviour of wood-ash-modified BCS and laboratory lime-treated BCS specimens are examined in this study. Such a study is required to assess the long-term behaviour of chemically stabilized soils in geotechnical applications. Cyclic wetting and drying caused the AMS specimens to become more porous and less saturated. Consequently, the cyclically wetted and dried (or desiccated) AMS specimens collapsed significantly at the experimental flooding pressures. The beneficial effects of lime-stabilization of the BCS specimens were also partially lost in cyclically wetting and drying them. The clay contents of the lime-treated BCS specimens increased on cyclic wetting and drying. The increased clay contents in turn, affected their Atterberg limits and swell–shrink potentials. Partial loss of inter-particle cementation, increased porosity, and reduced degree of saturation, also imparted small to moderate collapse potentials to the desiccated lime-treated BCS specimens.  相似文献   

16.
Triaxial and oedometer tests have examined how freezing–thawing (FT) and drying–wetting (DW) affect the hydraulic conductivity of a natural plastic clay. Because the clay was expansive, FT and DW in the laboratory produced only one order of magnitude increase in hydraulic conductivity above the ‘undisturbed’ value when permeated with water. Permeation with sodium carbonate or dimethyl sulfoxide reduced the hydraulic conductivity towards the undisturbed value, though some increases still remained. Hydraulic conductivities measured by oedometer were lower than those in the triaxial tests and varied strongly with applied pressure.  相似文献   

17.
In this study, the effects of salinity of infiltrating solutions on the swelling strain, compressibility, and hydraulic conductivity of compacted GMZ01 Bentonite were investigated. After swelling under vertical load using either distilled water or NaCl solutions with concentrations of 0.1, 0.5 M, and 1 M, laboratory oedometer tests were conducted on the compacted GMZ01 Bentonite. Based on the oedometer test results, hydraulic conductivity was determined using the Casagrande’s method. Results show that the swelling strain of highly compacted GMZ01 Bentonite decreases as the concentration of NaCl solution increases. The compression index C c * increases and then turns to decrease with an increase in the vertical stress or a decrease in the void ratio for different solutions, and the C c * decreases as the concentration of NaCl solution increases. The secondary consolidation coefficient C α increases linearly with the increase of the compression index C c * . Furthermore, a bi-linear relationship between the swelling index C s * and the secondary consolidation coefficient C α can be characterized clearly. The hydraulic conductivity increases as the concentration of NaCl solution increases, however, this increase can be prevented if a high confining stress is applied.  相似文献   

18.
Liu  Zhang-Rong  Cui  Yu-Jun  Ye  Wei-Min  Chen  Bao  Wang  Qiong  Chen  Yong-Gui 《Acta Geotechnica》2020,15(10):2865-2875

Bentonite pellet mixtures are considered as one of the candidate sealing materials for deep geological disposals of radioactive waste. One of the particularities of this material is the initial heterogeneous distribution of pellets and porosity within the mixture, leading to complex hydro-mechanical behaviour. In this paper, the hydro-mechanical properties of GMZ bentonite pellet mixtures were investigated in the laboratory by carrying out water retention tests on pellet mixtures under constant-volume condition and single pellets under free swelling condition, as well as a infiltration test on a column specimen of pellet mixture. In the infiltration test, the relative humidity and radial swelling pressure were monitored at five heights, the axial swelling pressure was also recorded. The instantaneous profile method was applied to determine the unsaturated hydraulic conductivities. Results show that, in high suction range (>?10 MPa) the water retention curve of pellet mixture under constant-volume condition was comparable to that of a single pellet under free swelling condition, while in low suction range (<?10 MPa) the latter exhibits a much higher water retention capacity. Due to clogging of large pores, the unsaturated hydraulic conductivity decreases as suction decreases to around 25 MPa. However, with further suction decrease, the hydraulic conductivity increases continuously until the value at saturated state, as in the case of most unsaturated soils. The radial swelling pressure at different heights develops with local sudden increase and decrease, which was attributed to local rearrangement of pellets upon wetting. By contrast, as the axial swelling pressure was measured on the global surface of the specimen, it develops in a more regular fashion.

  相似文献   

19.
The aim of this interdisciplinary study is to examine a component of the hydrological cycle in Galapagos by characterizing soil properties. Nine soil profiles were sampled on two islands. Their physical and hydrodynamic properties were analyzed, along with their mineralogical composition. Two groups of soils were identified, with major differences between them. The first group consists of soils located in the highlands (>350 m a.s.l.), characterized by low hydraulic conductivity (<10−5 m s−1) and low porosity (<25%). These soils are thick (several meters) and homogeneous without coarse components. Their clay fraction is considerable and dominated by gibbsite. The second group includes soils located in the low parts of the islands (<300 m a.s.l.). These soils are characterized by high hydraulic conductivity (>10−3 m s−1) and high porosity (>35%). The structure of these soils is heterogeneous and includes coarse materials. The physical properties of the soils are in good agreement with the variations of the rainfall according to the elevation, which appears as the main factor controlling the soil development. The clayey alteration products constrain soils physical and hydrodynamic properties by reducing the porosity and consequently the permeability and also by increasing water retention.  相似文献   

20.
Laboratory investigations were carried out on reddish brown tropical soils from Moniya, Ibadan Southwestern Nigeria to determine the basic unconfined compressive strength of the soil samples which is an important factor to be considered when considering materials as liners in waste containment structure. Clay mineralogy, major element geochemical analyses were carried out by means of X-ray diffractometry and X-ray fluorescence spectrometry respectively. The engineering tests such as sieve size analyses, Atterberg limits, natural moisture contents, specific gravity and compaction using four different compactive efforts namely reduced proctor, standard proctor, West African standard and modified proctor. The tests were carried out in line with the procedures of the British standard 1377 of 1990 and Head of 1992. The soils were found to contain kaolinite as the major minerals with some mixtures of smectite, muscovite, halloysite, quartzite, biotite and aluminium phosphate. Values of the unconfined compressive strength obtained within 12.5 and 22.5% moulding water contents equal to or greater than 200 kN/m2 which is the minimum acceptable value required for containment facilities. The maximum dry density, Mg/m3 ranged between 1.68 and 1.98 while Optimum moisture content, % ranged between 12.3 and 21.2. Hence, unconfined compressive strength values were found to be greater than 200 kN/m2 at dry unit weight of 16.20 kN/m3 especially when WAS and modified proctor compactive efforts were used which met the minimum required unconfined compressive strength of 200 kN/m2 for hydraulic barriers in waste containment facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号