首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dead whale carcasses that sink to the deep seafloor introduce a massive pulse of energy capable of hosting dynamic communities of organisms in an otherwise food-limited environment. Through long-term observations of one natural and five implanted whale carcasses in Monterey Canyon, CA, this study suggests that: (1) depth and related physical conditions play a crucial role in species composition; (2) the majority of species in these communities are background deep-sea taxa; and (3) carcass degradation occurs sub-decadally. Remotely operated vehicles (ROVs) equipped with studio quality video cameras were used to survey whales during 0.8 to seven year periods, depending on the carcass. All organisms were identified to the lowest possible taxon. Community differences among whale-falls seemed to be most strongly related to depth and water temperature. The communities changed significantly from initial establishment shortly after a carcass’ arrival at the seafloor through multiple years of steady degradation. The majority of species found at the whale-falls were background taxa commonly seen in Monterey Bay. While populations of species characterized as bone specialists, seep restricted, and of unknown habitat affinities were also observed, sometimes in great abundance, they contributed minimally to overall species richness. All whale carcasses, shallow and deep, exhibited sub-decadal degradation and a time-series of mosaic images at the deepest whale site illustrates the rapidity at which the carcasses degrade.  相似文献   

2.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

3.
The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.  相似文献   

4.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   

5.
Cold seep communities discovered at three previously unknown sites between 600 and 1000 m in Monterey Bay, California, are dominated by chemoautotrophic bacteria (Beggiatoa sp.) and vesicomyid clams (5 sp.). Other seep-associated fauna included galatheid crabs (Munidopsis sp.), vestimentiferan worms (Lamellibrachia barhami?), solemyid clams (Solemya sp.), columbellid snails (Mitrella permodesta, Amphissa sp.), and pyropeltid limpets (Pyropelta sp.). More than 50 species of regional (i.e. non-seep) benthic fauna were also observed at seeps. Ratios of stable carbon isotopes (δ13C) in clam tissues near 36‰ indicate sulfur-oxidizing chemosynthetic production, rather than non-seep food sources, as their principal trophic pathway. The “Mt Crushmore” cold seep site is located in a vertically faulted and fractured region of the Pliocene Purisima Formation along the walls of Monterey Canyon ( 635 m), where seepage appears to derive from sulfide-rich fluids within the Purisima Formation. The “Clam Field” cold seep site, also in Monterey Canyon ( 900 m) is located near outcrops in the hydrocarbon-bearing Monterey Formation. Chemosynthetic communities were also found at an accretionary-like prism on the continental slope near 1000 m depth (Clam Flat site). Fluid flow at the “Clam Flat” site is thought to represent dewatering of accretionary sediments by tectonic compression, or hydrocarbon formation at depth, or both. Sulfide levels in pore waters were low at Mt Crushmore (ca 0.2 mM), and high at the two deeper sites (ca 7.011.0 mM). Methane was not detected at the Mt Crushmore site, but ranged from 0.06 to 2.0 mM at the other sites.  相似文献   

6.
Abstract

As part of a National Oceanic and Atmospheric Administration (NOAA) program to understand bottom and nearbottom processes on the continental margin, the continental slope seaward of the coast of Delaware, just east of the Baltimore Canyon Trough, and northeast of Wilmington Canyon was studied in detail. With a suite of geophysical data, a 7.5 × 13.0‐km portion of the continental slope was surveyed and found to be composed of a large submarine slide, approximately 11 km 3 in volume. The slide varies from 50 to 300 m in thickness and is believed to be composed of Pleistocene Age sediments. The internal structure of the continental slope can be seen on the seismic reflection profiles, as well as the readily identifiable continuous slip surface. Pliocene to Cretaceous horizons comprise the continental margin with Pliocene to Eocene horizons truncated at the slip surface. Sediment failure occurred on the slope between the late Tertriary erosion surface, which shaped the continental margin, and the overlying Quaternary sediments. A mechanism suggested to have contributed to the sediment failure is a late Pleistocene lower stand of sea level. Creep of surficial sediments is believed to be active on the surface of the submarine slide, indicating present‐day instability.  相似文献   

7.
Monterey Fan is the largest modern fan off the California shore. Two main submarine canyon systems feed it via a complex pattern of fan valleys and channels. The northern Ascension Canyon system is relatively inactive during high sea-level periods. In contrast, Monterey Canyon and its tributaries to the south cut across the shelf and remain active during high sea level. Deposition on the upper fan is controlled primarily by the relative activity within these two canyon systems. Deposition over the rest of the fan is controlled by the oceanic crust topography, resulting in an irregular fan shape and periodic major shifts in the locus of deposition. Margin setting represents fan and/or source area  相似文献   

8.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

9.
Abstract

The use of marine high‐resolution geophysical profiling data, seafloor soil samples, and accepted land‐based methods of analysis have provided a means of assessing the regional geotechnical conditions and relative slope stability of the portion of the Gulf of Alaska Continental Margin known as the Kodiak Shelf. Eight distinct types of soils were recognized in the study; the seafloor distribution of these indicates a complex geotechnical setting. Each soil unit was interpreted as having a distinct suite of geotechnical properties and potential foundation engineering problems. Seven categories of relative slope stability were defined and mapped. These categories range from “highest stability”; to “lowest stability,”; and are based on the degree of slope of the seafloor, type of soil underlying the slope, and evidence of mass movement. The results of the analysis indicate that the highest potential for soil failure exists on (1) the slopes forming boundaries between the submarine banks and the broad sea valleys, and (2) the upper portion of the continental slope, where evidence of past slope failure is common. Also of concern are gently sloping areas near the edges of submarine banks where evidence of possible tension cracks and slow downhill creep was found.  相似文献   

10.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

11.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   

12.
Monterey Fan is the largest modern fan off the California shore. Two main submarine canyon systems feed it via a complex pattern of fan valleys and channels. The northern Ascension Canyon system is relatively inactive during high sea-level periods. In contrast, Monterey Canyon and its tributaries to the south cut across the shelf and remain active during high sea level. Deposition on the upper fan is controlled primarily by the relative activity within these two canyon systems. Deposition over the rest of the fan is controlled by the oceanic crust topography, resulting in an irregular fan shape and periodic major shifts in the locus of deposition.  相似文献   

13.
Sea floor responses to hydrocarbon seeps,Louisiana continental slope   总被引:2,自引:1,他引:2  
Observations and samples from research submersible dives confirm that brines, crude oil, fluid mud, and gases are common seep products. Through this mechanism a unique interplay of geochemical, geologic, and biological processes resulting in unusual sea floor features ranging from carbonate-rich nodular sediments to mounds with tens of meters relief. Stable carbon isotopes occluded in the carbonates provide a permanent imprint that links these authigenic carbonates to by-products of microbial breakdown of crude oil and gas. Recent DSV ALVIN dives confirm that hydrocarbon seeps and their accompanying chemosynthetic communities and authigenic carbonate mounds occur over the entire depth range of the slope.  相似文献   

14.
《Ocean Modelling》2002,4(3-4):221-248
Three-dimensional numerical simulations of the generation and propagation of the semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey Canyon are carried out using a primitive equation model. Forcing with just sea level at the offshore boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal tides are generated at the canyon foot and rim, and along portions of the canyon floor. The results compare favorably with observations, both indicating enhancement of energy along the canyon floor propagating at an angle consistent with linear internal wave theory. Due to the earth's rotation, internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern side. The effect of canyon floor slope is explored, with the finding that small changes in the slope result in large changes in the amount and distribution of the internal tide energy. Canyons whose floors are subcritical with respect to the semidiurnal frequency along their entire length have very little baroclinic energy, whereas canyons that are near-critical along much of their length, such as the Monterey Canyon, develop strong internal tides that propagate shoreward. Canyons that are near-critical at their mouths but supercritical further inshore generate the most internal tidal energy overall, although little of it makes it onto the continental shelf shoreward of the canyon head. The effects of internal tides within the canyons can be seen outside the canyons as well. Water is transported from depth onto the adjacent continental shelf along the canyon rims. This tidal pumping can be responsible for alongshore internal tide propagation and tidal-period surface currents with relatively small horizontal scales of variability.  相似文献   

15.
Drainage-extraction algorithms traditionally used for extracting river networks and watersheds from gridded land topography are applied to gridded multibeam bathymetry of the mid-California margin. The algorithms are used to automatically map two regional tributary networks of submarine canyons and deepsea channels draining Monterey Bay, the principal conduits of which are Acension and Monterey Canyons. The algorithms reliably map subaqueous drainage areas, but are prone to error in mapping the extent of submarine canyon and channel thalwegs due to operator subjectivity and algorithm limitations. A geomorphic comparison of the Acension and Monterey Canyon networks, with 12 river networks in the continental U.S., illustrates both the potential and weaknesses of using drainage extraction algorithms to analyze sediment pathways in gridded bathymetry.  相似文献   

16.
Northern Gulf of Mexico continental slope   总被引:1,自引:0,他引:1  
The hummocky continental slope in the northwestern Gulf of Mexico is the result of active salt tectonism and accompanying faulting. Fluid and gassy hydrocarbons rise through the sediment column and along faults causing the formation of gas hydrates, gassy sediments, mud volcanoes and mounds, chemosynthetic communities and authigenic carbonates, reefs, and hardgrounds. Salt activity coupled with processes associated with relative sea level fluctuations create a feedback relationship resulting in the above-mentioned phenomena as well as others such as seafloor erosion at great water depths.  相似文献   

17.
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.  相似文献   

18.
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified:the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initiated during the middle Pleistocene and guided by F4 that is a N-S trending fault on the slope and F1, a large NW-SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE-trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by F5, a N-S trending fault, diverted and blocked by the submarine terrace.  相似文献   

19.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   

20.
Recent developments in seafloor imaging and mapping techniques greatly improved our capability of identifying marine geohazards affecting continental margins. Geomorphic features can be detected in great detail by high-resolution multibeam imaging and regarded as geohazard indicators; the most common include slide scars and deposits, canyon headscarps and steep erosional flanks, fault-related seafloor unevenness, mud volcanoes, pockmarks, gravity flow deposits, erosional scours and bedforms indicating sediment mobility at diverse temporal/spatial scale. These processes are widespread on Italian continental margins and are potential indicators of geohazard for human settlements and infrastructures in the offshore and coastal zones. The national Project MaGIC (Marine Geohazards along the Italian Coasts) aims at documenting potential geohazards based on the acquisition of high-resolution multibeam bathymetry and on the production of maps of the geohazard-related geomorphic features for most of the Italian continental margins. With reference to this issue, we discuss some of the most frequent problems dealing with reconnaissance, interpretation and cartographic representation of geohazard-related geomorphic features at a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号