首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTIONInrecentyearstheecoenvironmentoftheChangjiangRiverbasinsufferedfromseveredestruction,sedimentcontentintheriverwatergreatlyincreased,thedownstreamcoursewasseriouslysiltedupandfloodcontrolcapacitywasweakened.Thesimilarsituationalsooccu…  相似文献   

2.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

3.
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km 2 , less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km 2 , less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km 2 , large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km 2 , large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.  相似文献   

4.
The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%–167%), 374 μatm (91–640 μatm), and 8.53 nmol L?1 (1.10–27.50 nmol L?1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m?2 d?1 (0.26–62.77 μmol m?2 d?1), and ?4.7 mmol m?2 d?1 (?110.8-31.7 mmol m?2 d?1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.  相似文献   

5.
Application of swat model in the upstream watershed of the Luohe River   总被引:6,自引:0,他引:6  
1INTRODUCTIONIntheHuanghe(Yellow) Riverbasin, soilerosionisaseriousproblem,whilerunoffandsedimentyieldsim-ulation hasnotbeenextensivelystudiedonthebasisofGIS(GeographicInformationSystem) and dis-tributedhydrologicalmodel.Inthisstudy,theLushiwatershed,whichislocatedattheupstreamoftheLushiHydrologicalStationintheLuoheRiver—thebiggesttributary oftheHuanghe Riveranddown-streamofXiaolangdiDam,isselectedasthestudyarea.ThelevelofsoilerosioninLushiwatershedismoderatein theHuangheRiverbas…  相似文献   

6.
Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang's annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.6×104  相似文献   

7.
The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it. The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river. In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/ sec. The drainage area of the Dam River is 1.8 times as larger as that of the Tuotuo River; the drainage area of the Dam River is 30,715.7 km2, the Tuotuo River is 16,691.0 km2. Through synthetic analysis of the factors mentioned above, we came to the conclusion that the main source of the Changjiang River is the Dam River instead of the Tuotuo River.  相似文献   

8.
In order to study the diurnal variation of soil CO_2 efflux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO_2 flux system under five typical plant communities(Suaeda glauca(Sg), Chloris virgata(Cv), Puccinellia distans(Pd), Leymus chinensis(Lc) and Phragmites australis(Pa)) and an alkali-spot land(As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO_2 efflux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration(Rs) often appeared between 11:00 and 13:00, while the minimum occurred at 21:00–23:00 or before dawn. Air temperature near the soil surface(Ta) and soil temperature at 10 cm depth(T10) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00–9:00 could be used as the optimal measuring time to represent the daily mean soil CO_2 efflux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO_2 efflux was close to the soil CO_2 efflux from 15:00 to 17:00 and the mean of 2 individual soil CO_2 efflux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO_2 fluxes(CO_2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO_2 fluxes were 0.10–1.55 μmol/(m~2·s) and 0.10–0.69 μmol/(m~2·s)at the two sites. The results implied that alkaline soils could absorb CO_2 under natural condition, which might have significant implications to the global carbon budget accounting.  相似文献   

9.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   

10.
Emissions of biogenic sulfur gases (hydrogen sulfide (H2S) and carbonyl sulfide (COS)) from Phragmites australis coastal marsh in the Yellow River estuary of China were determined during April to December in 2014 using static chamber-gas chromatography technique with monthly sampling. The results showed that the fluxes of H2S and COS both had distinct seasonal and diurnal variations. The H2S fluxes ranged from 0.09 μg/(m2·h) to 7.65 μg/(m2·h), and the COS fluxes ranged from–1.10 μg/(m2·h) to 3.32 μg/(m2·h). The mean fluxes of H2S and COS from the P. australis coastal marsh were 2.28 μg/(m2·h), and 1.05 μg/(m2·h), respectively. The P. australis coastal marsh was the emission source of both H2S and COS over the whole year. Fluxes of H2S and COS were both higher in plant growing season than in the non-growing season. Temperature had a dramatic effect on the H2S emission flux, while the correlations between COS flux and the environmental factors were not found during sampling periods. More in-depth and comprehensive research on other related factors, such as vegetation, sediment substrates, and tidal action is needed to discover and further understand the key factors and the release mechanism of sulfur gases.  相似文献   

11.
According to the analysis of grain size, mineral composition and inclusion in quartz grain of the suspended and bed load sampled from the Changjiang (Yangtze) River and the Huanghe (Yellow) River, the authors reveal the differentiation of loads between the two rivers. In the Huanghe River the size of suspended load is coarser than that in the Changjiang River, while the bed load is on the contrary. Through heavy mineral analysis, the biotite content of the Huanghe River loads is much higher than that of the Changjiang River, and the monomorillonite content of the former is about two times higher than the latter. All those may be attributed to the effects of different material sources and hydraulic conditions on load. The analysis of inclusion in quartz grain definitely illustrates the environmental difference of material sources between the two rivers. In the meantime, it provides a new method in seeking source of river load. Subsidized by the National Natural Science Foundation. This paper is attributed to careful guidance from Prof. Wang Ying & Prof. Shi Yunliang.  相似文献   

12.
I.GRAINSIZEOFLOAD1.GrainSizeofLoadfromtheHuangheRiverThesuspendedloadsampledfromtheHuangheRivermainlycomprisessiltwhoseconten...  相似文献   

13.
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world's 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea l  相似文献   

14.
TheSonghuaRiver,oneofthemajorriversinNortheastChina,hastwosources:thenorthsourceistheNenjiangRiverandthesouthsourceistheSecondSonghuaRiver.ThetrunkstreamoftheNenjiangRiver,risingatthesouthernfootoftheYilehuliMountain,is1370kmlonganditswatershedareais…  相似文献   

15.
The densities of 36 water samples from the Huanghe River estuary and Bohai Bay were determinedby a magnetic float densimcter under three temperatures from 15℃ to 25℃.All the measured densities ofsamples were greater than that of the values calculated from the International Equation of State of Seawater.The differences between the measured and calculated densities increased with the decrease of salinities.The dif-ferences appeared exponentially correlated with[Ca~(2+)]/s,[Mg~(2+)]/s and[SO_4~(2-)]/s,and had"s"type curverelationship with the alkalinity in all salinity range.But in the salinity ranging from 25.72 to 31.57,therelationships were all linear.The density difference can be estimated from the equation △ρ(10~3kg·m~(-3))=(-2.79+236.5([Ca~(2+)]/s)/(-9.7464×10~(-3)+[Ca~(2+)]/s).It was the high alkalinity and[Ca~(2+)]/s that resulted in the measured densi-ties of seawaters being higher than the calculated densities in the Huanghe estuary and Bohai Bay.  相似文献   

16.
In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area.  相似文献   

17.
The venerid clam (Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.  相似文献   

18.
The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (D!C) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO5 in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO5 and CO2. Although doubled CO2 level would enhance the biomass of N. patea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of IV. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.  相似文献   

19.
  1. The nonanthropogenic SO4 in the Changjiang River stems from weathering and oxidation of sulphate and sulphite minerals, while the anthropogenic SO4 here is attributed to acid rain containing H2SO4 formed by atmospheric sulphur oxides derived from the burning of fossil fuels in the region of the lower reaches. Ca and Mg are probably derived from weathering of carbonate minerals, but possibly less from weathering of silicate minerals.
  2. The Changjiang River estuary is characterized by two—layer flow based on the salinity section of the estuary, so a model of two—layer exchange of water—body in the Changjiang River estuary can be advanced.
  3. The presence of SO4 and K at stations H14 and H15 were found most likely to be due to the addition and removal processes, that of the other major consituents may be mainly controlled by physical mixing in this estuary.
  相似文献   

20.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号