首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A numerical model of magnetic turbulence allows us to compute the diffusion coefficients for different degrees of anisotropy, and in particular for the cases corresponding to the solar wind. We consider here the problem of the propagation of the energetic particles accelerated by corotating interaction regions (CIRs) and observed by Ulysses at high heliographic latitudes. The excursion in latitude of a magnetic field line located at large heliospheric distance is evaluated with a Monte Carlo simulation. In the calculations, the random `force' terms are proportional to the square root of the diffusion coefficient in each direction. By tracing a large number of field lines, we can devise how the particles would be seen by Ulysses. Good agreement with the actual observations is found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   

3.
At the end of August 2007, Venus, Earth and Ulysses were aligned within a few degrees. This unusual event gives the opportunity to attempt a coordinated study on the radial evolution of solar wind turbulence and coronal transients like CMEs between 0.7 and 1.4 AU. Interplanetary magnetic field data and moments of proton velocity distribution function such as density, speed and temperature are required for this programme and will be provided by ACE at Earth, Venus Express at Venus and Ulysses at 1.4 AU. This project has been recently proposed as a Coordinated Investigation Programme (CIP35) for the International Heliophysical Year.  相似文献   

4.
Richard Woo 《Solar physics》2005,231(1-2):71-85
The solar magnetic field is key to a detailed understanding of the Sun's atmosphere and its transition to the solar wind. However, the lack of detailed magnetic field measurements everywhere except at the photosphere has made it challenging to determine its topology and to understand how it produces the observed plasma properties of the corona and solar wind. Recent progress based on the synthesis of diversified observations has shown that the corona is highly filamentary, that the coronal magnetic field is predominantly radial, and that the ability of closed fields to trap plasma at the base of the corona is a manifestation of how the solar field controls the solar wind. In this paper, we explain how these results are consistent with the relationship between density structure of white-light images and fields and flow. We point out that the ‘shape’ of the corona observed in white-light images is a consequence of the steep fall-off in density with radial distance, coupled with the inherent limitation in the sensitivity of the observing instrument. We discuss how the significant variation in radial density fall-off with latitude leads to a coronal shape that is more precisely revealed when a radial gradient filter is used, but which also gives a false impression of the tracing of highly non-radial fields. Instead, the coronal field is predominantly radial, and the two magnetic features that influence the shape of the corona are the closed fields at the base of the corona, and the polarity reversal forming the heliospheric current sheet in the outer corona. An erratum to this article is available at .  相似文献   

5.
Bravo  S.  Stewart  G. A.  Blanco-Cano  X. 《Solar physics》1998,179(2):223-235
The Sun's magnetic field extends far from the photosphere, into the corona, defining a magnetically dominated region before being drawn out radially by the solar wind flow. This region, where the internal sources of the solar field dominate the plasma structures and the energetic particle movement, can be properly considered the solar magnetosphere. The magnetic field in this region can be approximately described by models that extrapolate photospheric magnetic field observations under some simplifying assumptions. In this paper we use a potential field model which describes the solar field up to a source surface at 3.25 Rs, where the field is constrained to become radial. We present the variation of the magnitude and inclination of the various multipolar components throughout the solar magnetic cycle that characterise the changes in the structure of the solar magnetosphere over a period of 22 years. We also present some 3-D images of the coronal magnetic structure to show the global evolution of the solar magnetosphere throughout the solar cycle and discuss the importance of taking this structure into account in order to relate interplanetary and solar features.  相似文献   

6.
Launched in October 1990, the ESA-NASA Ulysses mission has conducted the very first survey of the heliosphere within 5 AU of the Sun over the full range of heliolatitudes. With polar passes taking place in 1994 and 1995, the timing of the mission has enabled Ulysses to characterise the global structure of the heliosphere at solar minimum, when the corona adopts its simplest configuration. The most important findings to date include a confirmation of the uniform nature of the high-speed (∼ 750 km/s)solar wind flow from the polar coronal holes, filling two-thirds of the volume of the inner heliosphere; the sharp boundary, existing from the chromosphere through the corona, between fast and slow solar wind streams; the latitude independence of theradial component of the heliospheric magnetic field; the lower-than-expected latitude gradient of galactic and anomalous cosmic rays; the continued existence of recurrent increases in the flux of low-energy ions and electrons up to the highest latitudes. Without doubt, the Ulysses mission has provided a unique set of observations of the heliosphere at solar minimum, resulting in a good understanding of many aspects of its behaviour. In this review, we will highlight some of the key findings to date, and also look ahead to the challenges that await as Ulysses returns to high latitudes to explore the heliosphere at solar maximum and beyond. Finally, a brief summary is given of the prospects for heliospheric research in the post-Ulysses era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Using more than five years of data from the magnetometer and electron reflectometer (MAG/ER) on Mars Global Surveyor (MGS), we derive the draping direction of the magnetic field above a given latitude band in the northern hemisphere. The draping direction varies on timescales associated with the orbital period of Mars and with the solar rotation period. We find that there is a strongly preferred draping direction when Mars is in one solar wind sector, but the opposite direction is not preferred as strongly for the other solar wind sector. This asymmetry occurs at or below the magnetic pileup boundary (MPB), is observed preferentially on field lines that connect to the collisional ionosphere, and is independent of planetary longitude. The observations could be explained by a hemispherical asymmetry in the access of field lines to the low-altitude ionosphere, or possibly from global modification of the low-altitude solar wind interaction by crustal magnetic fields. We show that the draping direction affects both the penetration of sheath plasma to 400 km altitudes on the martian dayside and the radial component of the magnetic field on the planetary night side.  相似文献   

8.
The influence of latitudinally dependent boundary conditions on the large radius values of meridional flow in the distant solar wind is examined through a double perturbation expansion of the magnetohydrodynamic equations. A general result is derived for the meridional velocity which allows arbitrary specification of radial velocity, radial magnetic field, and mass flux, as a function of colatitude at some coronal reference surface. Three specific examples are treated, including the model of Pneuman and Kopp (1971). The latter example indicates that there may be flow toward the equator at large radii, as opposed to the pure equatorial divergence of internally generated motion due to a flow which is latitudinally uniform at the reference radius. A solar cycle effect most probably averages the boundary conditions so that only the equatorial divergence from an average spherically symmetric corona is seen in comet-tail observations. This may also explain the off-and-on-again nature of the meridional gradient in the radial velocity of the solar wind as seen in radio scintillation observations.  相似文献   

9.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

10.
The reduced magnetic helicity is a quantity related to the handedness of the magnetic field fluctuations. In the present paper we study the scaling law of the reduced magnetic helicity in fast streams in the solar wind by using high-resolution magnetic field data by the Ulysses spacecraft. We show that at high frequencies both the left-hand and the right-hand helicity survives, implying that there is no predominance of a single sign. In addition, the scaling law of the magnetic helicity exhibits a strong dependence on the data set analyzed and we do not observe any universal behavior.  相似文献   

11.
HOANG  S.  POQUÉRUSSE  M.  BOUGERET  J.-L. 《Solar physics》1997,172(1-2):307-316
Comparing the records of the radio spectrographs ARTEMIS (100–500 MHz) on the ground and URAP (1–1000 kHz) on the Ulysses spacecraft, we find that most type III bursts extend from the corona to the solar wind. Using the positions of the associated flares, and assuming an average intensity ratio between these two frequency ranges, we derive for the first time the average radiation pattern of interplanetary type III bursts. We find that at 800 kHz it is shifted east of the radial direction by 30° and has a half-width of about 80° at maximum/10; the shift and width increase towards lower frequencies. Ulysses high-latitude observations show that the cross-section perpendicular to the heliospheric equator is about the same. We interpret these properties by refraction effects in local density gradients.  相似文献   

12.
ISSAUTIER  K.  MEYER-VERNET  N.  MONCUQUET  M.  HOANG  S. 《Solar physics》1997,172(1-2):335-343
We present new in situ measurements of solar wind electron density as a function of heliolatitude. The data were obtained on Ulysses during its fast transit from south solar pole to north solar pole, at heliocentric distance about 1.5 AU, near the 1996 solar activity minimum. The density is measured accurately using the method of quasi-thermal noise spectroscopy with the Ulysses radio experiment, at a higher time resolution than the particle analysers on board. At low heliolatitudes (22° S to 21° N) the histogram of our data shows three main classes of flows with densities centered at 3.5, 7, and 12 cm-3, close to the values previously found by near-ecliptic space probes, in the region where fast coronal hole wind alternates with slower streamer belt wind. Poleward of 22° latitude where Ulysses encountered fast wind coming from coronal holes, the histogram of our data shows a single class of flow centered at 2.9 cm-3 with a roughly normal distribution. We find a density nearly independent of latitude, with the mean density from the south coronal hole 10% larger than that from the north, which may stem from a genuine north/south asymmetry and/or from the small decrease in solar activity during the time of the observations. We finally compare the data with some analytical models.  相似文献   

13.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

14.
A preliminary model of the internal magnetic field of the Moon is developed using a novel, correlative technique on the low-altitude Lunar Prospector magnetic field observations. Subsequent to the removal of a simple model of the external field, an internal dipole model is developed for each pole-to-pole half-orbit. This internal dipole model exploits Lunar Prospector's orbit geometry and incorporates radial and theta vector component data from immediately adjacent passes into the model. These adjacent passes are closely separated in space and time and are thus characteristic of a particular lunar regime (wake, solar wind, magnetotail, magnetosheath) or regimes. Each dipole model thus represents the correlative parts of three adjacent passes, and provides an analytic means of continuing the data to a constant surface of 30 km above the mean lunar radius. The altitude-normalized radial field from the wake and tail regimes is used to build a model in which 99.2% of the 360 by 360 bins covering the lunar surface are filled. This global model of the radial magnetic field is used to construct a degree 178 spherical harmonic model of the field via the Driscoll and Healy sampling theorem. Terms below about degree 150 are robust, and polar regions are considered to be the least reliable. The model resolves additional detail in the low magnetic field regions of the Imbrium and Orientale basins, and also in the four anomaly clusters antipodal to the large lunar basins. The model will be of use in understanding the sources of the internal field, and as a first step in modeling the interaction of the internal field with the solar wind.  相似文献   

15.
A. V. Usmanov 《Solar physics》1993,143(2):345-363
An attempt is made to infer parameters of the solar corona and the solar wind by means of a numerical, self-consistent MHD simulation. Boundary conditions for the magnetic field are given from the observations of the large-scale magnetic field at the Sun. A two-region, planar (the ecliptic plane is assumed) model for the solar wind flow is considered. Region I of transonic flow is assumed to cover the distances from the solar surface up to 10R S (R S is the radius of the Sun). Region II of supersonic, super-Alfvénic flow extends between 10R S and the Earth's orbit. Treatment for region I is that for a mixed initial-boundary value problem. The solution procedure is similar to that discussed by Endler (1971) and Steinolfson, Suess, and Wu (1982): a steady-state solution is sought as a relaxation to the dynamic equilibrium of an initial state. To obtain a solution to the initial value problem in region II with the initial distribution of dependent variables at 10R S (deduced from the solution for region I), a numerical scheme similar to that used by Pizzo (1978, 1982) is applied. Solar rotation is taken into account for region II; hence, the interaction between fast and slow solar wind streams is self-consistently treated. As a test example for the proposed formulation and numerical technique, a solution for the problem similar to that discussed by Steinolfson, Suess, and Wu (1982) is obtained. To demonstrate the applicability of our scheme to experimental data, solar magnetic field observations at Stanford University for Carrington rotation 1682 are used to prescribe boundary conditions for the magnetic field at the solar surface. The steady-state solution appropriate for the given boundary conditions was obtained for region I and then traced to the Earth's orbit through region II. We compare the calculated and spacecraft-observed solar wind velocity, radial magnetic field, and number density and find that general trends during the solar rotation are reproduced fairly well although the magnitudes of the density in comparison are vastly different.  相似文献   

16.
We conducted an analysis of the radial evolution of the wave phenomena observed in the inner solar system and associated with the high velocity solar wind stream pattern. The combined interplanetary magnetic field observations performed by Helios-1 and Helios-2 spacecraft allow to draw the following conclusions: (a) The compressive contribution to field fluctuations with periods less than 6 hr is observed to increase with the increasing heliocentric distance and the total variance of the field components decreases appreciably faster than r –3. (b) When compared with theoretical models, Helios observations confirm a better agreement with wave modes which saturate at a constant value of the ratio between the wave energy density and the ambient field energy density.Also at Istituto per il Plasma nello Spazio, CNR, Frascati, Italy.  相似文献   

17.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

18.
The global structure of the solar wind in June 1991   总被引:1,自引:0,他引:1  
A. V. Usmanov 《Solar physics》1993,148(2):371-382
A numerical simulation of the global solar wind structure for Carrington rotation 1843 (31 May–28 June, 1991) is performed based on a fully three-dimensional, steady-state MHD model of the solar wind (Usmanov, 1993b). A self-consistent solution for 3-D MHD equations is constructed for the spherical shell extending from the solar photosphere up to 10 AU. Solar magnetic field observations are used to prescribe boundary conditions. The computed distribution of the magnetic field is compared with coronal hole observations and with the IMF measurements made by IMP-8 spacecraft at the Earth's orbit.  相似文献   

19.
20.
High speed dust streams emanating from near Jupiter were first discovered by the Ulysses spacecraft in 1992. Since then the phenomenon has been re-observed by Galileo in 1995, Cassini in 2000, and Ulysses in 2004. The dust grains are expected to be charged to a potential of , which is sufficient to allow the planet's magnetic field to accelerate them away from the planet, where they are subsequently influenced by the interplanetary magnetic field (IMF). A similar phenomenon was observed near Saturn by Cassini. Here, we report and analyze simultaneous dust, IMF and solar wind data for all dust streams from the two Ulysses Jupiter flybys. We find that compression regions (CRs) in the IMF – regions of enhanced magnetic field – precede most dust streams. Furthermore, the duration of a dust stream is roughly comparable with that of the precedent CR, and the occurrence of a dust stream and the occurrence of the previous CR are separated by a time interval that depends on the distance to Jupiter. The intensity of the dust streams and their precedent CRs are also correlated, but this correlation is only evident at distances from the planet no greater than 2 AU. Combining these observations, we argue that CRs strongly affect dust streams, probably by deflecting dust grain trajectories, so that they can reach the spacecraft and be detected by its dust sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号