首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
卫星重力与地球重力场   总被引:1,自引:1,他引:0  
卫星重力探测技术可获取全球均匀覆盖的地球重力场信号。以GRACE为代表的卫星跟踪卫星(satellite—to—satellite tracking,SST)计划为人类提供了前所未有丰富的中长波尺度的全球地球重力场信息。本文包含两部分研究内容:一是给出基于能量守恒原理的GRACESST重力观测方程,并采用此方法以实测GRACE观测数据求解得到120阶的GRACE地球重力场模型WHU—GM—05,并同国际上具有代表性的类似模型进行了分析比较;二是采用解析方法分析了SST观测系统中KBR、ACC、星载GPS等有效栽荷误差与获取地球重力场信号性能的响应,为我国SST设计和实施提供参考。  相似文献   

2.
在卫星重力场测量中,星星跟踪是获取中高阶重力场模型的有效方式,是GRACE Follow-on、GRACE II等下一代国际重力卫星所采用的测量方式.星星跟踪重力卫星任务设计需要考虑轨道高度、星间距离、定轨误差、星间距离变化率测量误差、非引力干扰确定误差、任务测量时间和数据采样间隔等任务参数,这些参数共同决定了重力场测量的时间分辨率、空间分辨率及其精度等重力场测量性能.如何分析这些系统参数对重力场测量性能的复杂物理机理,进而提出合理、优化的任务参数设计方法,是星星跟踪重力场测量系统设计中的重要问题.为此,本文建立了星星跟踪重力场测量性能的解析计算模型,并利用GRACE重力卫星测量参数验证了该解析模型,进而提出了重力卫星系统参数设计方法,为实现星星跟踪重力场测量性能最大化奠定了理论基础.  相似文献   

3.
利用卫星跟踪卫星和卫星重力梯度测量技术来测定全球重力场,是近几年重力场测量领域的一个发展重点。由这些卫星上的各种数据获得的地球重力场模型在精度和分辨率上都得到了很大程度上的提高。本文首先以CHAMP、GRACE、GOCE三颗卫星为例,介绍了当前卫星重力测量的主要方法、原则,对三颗卫星的特点进行了说明。同时对三颗卫星的组成部分、轨道参数、应用领域进行了介绍。对于由CHAMP、GRACE卫星数据生成的重力场模型,文中进行了分析、评价和比较。  相似文献   

4.
吴汤婷 《测绘学报》2020,49(1):134-134
地球重力场是地球的基本物理场,表征着地球物质空间分布、运动和变化,一直是大地测量学科的核心科学任务之一。随着卫星重力测量技术的飞速发展,21世纪初国际卫星重力探测计划,CHAMP、GRACE和GOCE先后成功实施,提供了大量高低卫星跟踪卫星、低低卫星跟踪卫星以及卫星重力梯度观测数据,为研究地球重力场精细结构和构建高精度全球重力场模型提供精确的长波信息。其中,基于卫星跟踪卫星观测值恢复高精度中长波重力场被各国学者广泛而深入地研究。在此背景下,本文研究由卫星跟踪卫星技术利用加速度法确定地球重力场模型的理论与方法。  相似文献   

5.
近20年来,利用重力卫星研究地球系统的质量分布得到了广泛的发展,使人类对发生在大气、水圈、海洋、极地冰盖等地球圈层的动态过程有了更为深刻的理解。现阶段重力卫星主要包括挑战性小卫星有效载荷计划、地球重力场恢复及气候探测计划(gravity recovery and climate experiment,GRACE),地球重力场稳态海洋环流探测计划和GRACE后续任务,回顾其发展历程,简要说明其在地球重力场解算的研究进展及存在的问题。为了改善现阶段重力卫星的缺点,国际上各研究机构为下一代重力卫星任务(next generation gravity mission,NGGM)提出众多远景规划和模拟分析,梳理了国际上提出的12种下一代重力卫星任务的任务概念、预期精度及任务状态。为了更加清晰介绍NGGM和整体把握其进展,根据星座构型和卫星载荷技术将其划分为4类,即Sharifi型重力卫星星座、Bender型重力卫星星座、星链型重力卫星星座和量子型重力卫星星座,并综合分析其性能,尝试性地给出相应的参考性实施建议。  相似文献   

6.
卫星跟踪卫星(satellite-to-satellite tracking,SST)的研究可追溯到20世纪60年代,多种方案(GRAVSAT、GRM等)被研究和讨论。但是直到CHAMP(2000)和GRACE(2002)卫星的发射成功,才获得实用的SST数据用于全球范围重力场的研究,SST提供的丰富资料在重力场理论研究方面蕴含的巨大潜力使其成为地学研究的热点问题之一。  相似文献   

7.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...  相似文献   

8.
国际重力卫星研究进展和我国将来卫星重力测量计划   总被引:12,自引:3,他引:9  
本文首先分别介绍了国际已经成功发射的专用地球重力测量卫星CHAMP、GRACE以及即将发射的GOCE、GRACE Follow-On和专用月球重力探测卫星GRAIL的研制机构、轨道参数、关键载荷、跟踪模式、测量原理、科学目标和技术特征;其次,阐述了当前相关学科对地球重力场测量精度的需求;最后,建议我国在将来实施的卫星重力测量计划中首选卫星跟踪卫星高低\低低模式,尽快开展轨道参数优化选取的定量系统研究论证和重力卫星系统的误差分析,依据匹配精度指标先期开展重力卫星各关键载荷的研制以及尽早启动卫星重力测量系统的虚拟仿真研究。  相似文献   

9.
德国地学研究中心GFZ(GeoForschungsZen-trum Potsdam)于2003年7月25公布了第一个GRACE(Gravity Recovery and Climate Experi-ment)地球重力位模型EIGEN-GRACE01S(Euro-pean Improved Gravity model of the Earth by Newtechniques)。该模型在半波长1000km的精度至少是最新的CHAMP(GFZ’S CHAllenging Minisa-tellite Payload Mission)模型的5倍。在CHAMP和GRACE卫星计划之前,地球重力场的长波信息的获取主要依赖于对人造地球卫星的跟踪测量,通常只能得到1000km或更长波长的信息。而仅利用卫星跟踪数据很难得到地球重力场的短波信息。因此,地球重力位模型的中、短波分量需由航空重力测量、海洋重力测量或地面重力测量得到。2000年7月开始的  相似文献   

10.
利用轨道扰动引力谱和大地水准面累计误差谱分析的方法估计未来GRACE(gravity recovery and climateexperiment)Follow-On卫星反演地球重力场的空间分辨率。基于GRACE Follow-On卫星的轨道特性,计算其在高空所受到的径向扰动引力,并根据谱特性及星载加速度计的测量噪声水平分析该卫星能反演重力场的阶数。利用EGM96重力场模型分别计算200 km和250 km轨道高度处的扰动引力谱。分析其特性表明:在两个轨道高度处分别能反演281阶和242阶的地球重力场模型。给出大地水准面累计误差谱模型,并计算200 km和250 km轨道高度处大地水准面累计误差谱。分析其谱特性表明:在两个轨道高度处分别能反演至286阶和228阶的地球重力场模型。  相似文献   

11.
GOCE采用的高低卫-卫跟踪和卫星重力梯度测量技术在恢复重力场方面各有所长并互为补充,如何有效利用这两类观测数据最优确定地球重力场是GOCE重力场反演的关键问题。本文研究了联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的最小二乘谱组合法,基于球谐分析方法推导并建立了卫星轨道面扰动位T和径向重力梯度Tzz、以及扰动位T和重力梯度分量组合{Tzz-Txx-Tyy}的谱组合计算模型与误差估计公式。数值模拟结果表明,谱组合计算模型可以有效顾及各类数据的精度和频谱特性进行最优联合求解。采用61天GOCE实测数据反演的两个180阶次地球重力场模型WHU_GOCE_SC01S(扰动位和径向重力梯度数据求解)和WHU_GOCE_SC02S(扰动位和重力梯度分量组合数据求解),结果显示后者精度优于前者,并且它们的整体精度优于GOCE时域解,而与GOCE空域解的精度接近,验证了谱组合法的可行性与有效性。  相似文献   

12.
An integrated wavelet concept of physical geodesy   总被引:4,自引:1,他引:3  
For the determination of the earth's gravity field many types of observations are nowadays available, including terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradio-metry, etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e. linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth's surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth's models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry and combined satellite-to-satellite tracking and gradiometry. Received: 28 February 1997 / Accepted: 17 November 1997  相似文献   

13.
Simulation study of a follow-on gravity mission to GRACE   总被引:9,自引:3,他引:6  
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth’s time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to ~0.6 nm/s as compared to ~0.2 μm/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (~480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of ~250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.  相似文献   

14.
国际卫星重力梯度测量计划研究进展   总被引:12,自引:2,他引:10  
本文首先阐述了重力梯度测量原理、从20世纪初到21世纪初重力梯度仪的研究历程、卫星重力梯度仪(静电悬浮重力梯度仪、超导重力梯度仪和量子重力梯度仪)的技术特征以及卫星重力梯度测量的特点;其次,介绍了基于卫星重力梯度技术恢复250阶GOCE地球重力场以及论证首先开展一维径向重力梯度仪的研制进而恢复高精度和高空间解析度中高频地球重力场可行性方面的研究进展;最后,建议我国尽早开展基于时空域混合法解算中高频地球重力场和卫星重力梯度测量系统误差分析的预先研究。  相似文献   

15.
本文对GFZ发布的GRACE EIGEN-GL04C重力场模型从球谐系数分析、误差阶方差分析两方面进行了精度评价。研究表明,相较于以往的重力场模型,EIGEN-GL04C重力场模型精度对120阶以下(未包含J2项)的地球中长波部分具有明显的改善。GRACE重力卫星测量已经成为获取地球重力场信息的重要手段。  相似文献   

16.
卫星跟踪卫星技术的进展及应用前景   总被引:9,自引:4,他引:5  
卫星跟踪卫星技术被认为是 2 1世纪初最有价值和应用前景的高效重力探测技术 ,旨在测定中长波重力场的精细结构及时间相依变化。本文首先简要阐述卫星跟踪卫星技术的发展背景及概况 ,其次介绍目前已经实施和将要实施的卫星跟踪卫星计划 CHAMP和 GRACE的进展情况 ,最后讨论该技术在精化地球重力场和研究相关地学问题中的应用前景。  相似文献   

17.
卫星重力探测技术为监测全球陆地水储量变化提供了新的技术手段。采用Level-2 Release-05版本GRACE时变重力场模型数据计算了2010年全球陆地水储量的月变化;着重研究了扇形滤波对反演结果的影响;并结合GLDAS水文模型数据对反演结果进行了验证分析。实验结果表明:GRACE反演结果 GLDAS水文模型结果在时空分布上符合较好;扇形滤波能够削弱GRACE时变重力场模型的高阶项误差影响,有效去除反演结果中的条带状噪声。  相似文献   

18.
中国区域SST卫星重力场模型精度分析   总被引:1,自引:0,他引:1  
通过比较最新SST地球重力场模型EIGEN_GRACE02S、GGM02S和EGM96模型在中国区域与WDM94模型重力异常残差的差异,分析差异产生的原因及分布,研究新一代卫星重力方法对于提高区域重力场模型精度的潜力以及存在的问题。结果证明,卫星跟踪卫星方法对于现有模型中低阶部分有明显改善。  相似文献   

19.
IntroductionThe high-accauary and high-resolution Earth’sgravity field can be recovered with satellite-to-satellite tracking (SST) technique , the preciseintersatellite tracking technique . The SSTtech-nique has been studied since 1960’s . The modesof S…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号