首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The dynamical effect of land surface heterogeneity on heat fluxes in the atmospheric boundary layer (ABL) is investigated using numerical simulations with a non-hydrostatic model over a wide range of grid resolutions. It is commonly assumed that mesoscale or dynamical fluxes associated with mesoscale and convective circulations simulated by a high-resolution model (subgrid (SG) model) on the subgrid scale of a climate model (large-scale (LS) model) represent additional processes in the ABL, which are not considered by the turbulence scheme of the LS-model, and which can be parameterized using the SG-model. The present study investigates the usefulness of this methodology for small-scale and large-scale idealized heterogeneities using a SG-model resolving mesoscale or even microscale circulations to compute the mesoscale fluxes on the scale of the LS-model. It is shown that the dynamical transports as derived from the SG-model should not be used to correct the parameterized turbulent fluxes of the LS-model. The reason is that the subgrid circulations simulated by the SG-model interact with the fields of wind and scalars in the ABL, which results in reduced turbulent fluxes in the ABL. Thus the methodology of previous studies to use mesoscale/dynamical fluxes for the correction of flux profiles simulated by climate models seems to be questionable.  相似文献   

2.
Data collected during the Land Surface Processes Experiment (LASPEX) in a semi-arid region of the state of Gujarat in north-west India for a clear sky day (16 May 1997) are used to assess the performance of the atmospheric boundary-layer (ABL) and land- surface parameterizations in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5). The ABL turbulence parameterizations examined are the Blackadar scheme coupled to a simple soil slab model (SSM), and the Troen-Mahrt scheme coupled to SSM or to the more sophisticated Noah land-surface model (NSM). The comparison of several two-way nested high resolution (9-km) MM5 short term 24-h simulations indicate that, although the model is able to capture the trend in the observed data, the computed results deviate from observations. The NSM with a modest treatment of vegetation outperforms the SSM in capturing the observed daily variations in surface heat fluxes and aspects of ABL structure over the tropical land surface at local scales. Detailed analysis showed that, with the incorporation of observed local vegetation and soil characteristics, the NSM reproduced a realistic surface energy balance and near-surface temperature. It is further found that the coupling of the NSM with the Troen-Mahrt ABL scheme leads to excessive ABL mixing and a dry bias in the model simulations.  相似文献   

3.
4.
5.
The atmospheric boundary-layer (ABL) depth was observed by airborne lidar and balloon soundings during the Southern Great Plains 1997 field study (SGP97). This paper is Part I of a two-part case study examining the relationship of surface heterogeneity to observed ABL structure. Part I focuses on observations. During two days (12–13 July 1997) following rain, midday convective ABL depth varied by as much as 1.5 km across 400 km, even with moderate winds. Variability in ABL depth was driven primarily by the spatial variation in surface buoyancy flux as measured from short towers and aircraft within the SGP97 domain. Strong correlation was found between time-integrated buoyancy flux and airborne remotely sensed surface soil moisture for the two case-study days, but only a weak correlation was found between surface energy fluxes and vegetation greenness as measured by satellite. A simple prognostic one-dimensional ABL model was applied to test to what extent the soil moisture spatial heterogeneity explained the variation in north–south ABL depth across the SGP97 domain. The model was able to better predict mean ABL depth and variations on horizontal scales of approximately 100 km using observed soil moisture instead of constant soil moisture. Subsidence, advection, convergence/divergence and spatial variability of temperature inversion strength also contributed to ABL depth variations. In Part II, assimilation of high-resolution soil moisture into a three-dimensional mesoscale model (MM5) is discussed and shown to improve predictions of ABL structure. These results have implications for ABL models and the influence of soil moisture on mesoscale meteorology  相似文献   

6.
Summary A one-dimensional chemistry-boundary layer model was used to study the effects of differing representations of atmospheric boundary layer (ABL) processes on simulated concentrations of passive and chemically reactive tracers. Two local- and two nonlocal-closure ABL schemes were used to perform numerical simulations during convective conditions in the ABL. Observational data from the First International Statellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) were used to provide initial meteorological conditions while representative chemical concentrations and surface and elevated emission rates were used to provide initial chemical conditions and chemical sources to the one-dimensional model. Two sets of numerical simulations were performed using the four ABL schemes. The first set simulated bottom-to-top mixing characteristics, and the second set simulated top-to-bottom mixing characteristics. Model simulations were performed for 12h starting from 0700LT 11 July 1987.Our analysis indicate that the simulated concentrations of both passive and reactive chemical species were sensitive to the type of ABL scheme used to represent turbulent mixing processes. Characteristic features associated with each scheme (e.g., growth and intensity of mixing in the ABL) contributed to the differences among the simulated species concentrations. For some of the chemical species these differences were large, particularly in the surface layer and in the interfacial layers of the ABL. In turn, differences caused by the differing mixing representations resulted in different chemical production/destruction rates. As a consequence, the simulated species concentrations differed among the simulations. We also found that chemical species concentrations were more sensitive to the type of ABL scheme in the bottom-to-top mixing simulations than in the top-to-bottom simulations.With 10 Figures  相似文献   

7.
A diagnostic study of heat transfer within the lower atmosphere and between the atmosphere and the surface of the Arctic Ocean snow/ice pack during clear-sky conditions is conducted using data from the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. Surface heat budgets computed for four cloudy and four clear periods show that, while the net turbulent heat fluxes at the surface are small during the cloudy periods, during the clear-sky periods they are a considerable source of surface heating, balancing significant portions of the conductive heat fluxes from within the snow/ice pack. Analysis of the dynamics and thermodynamics of the lower atmosphere during the clear-sky periods reveals that a considerable portion of the heat lost to the surface by turbulent heat fluxes is balanced by locally strong heating near the atmospheric boundary-layer (ABL) top due to the interaction of subsiding motions with the strong overlying temperature inversions surmounting the ABL. This heat is then entrained into the ABL and transported to the surface by turbulent mixing, maintained by a combination of vertical wind shear and wave-turbulence interactions. The frequency of stable, clear-sky periods, particularly during the winter, combined with these results, suggests that the downward transfer of heat through the lower atmosphere and into the surface represents an important component of the heat budgets of the lower atmosphere and snow/ice pack over the annual cycle  相似文献   

8.
The Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer (PBL) scheme is a second-order turbulence closure model that is an improved version of the Mellor–Yamada scheme based on large-eddy simulation data. It simulates PBL structure and evolution well, particularly over the ocean surface. However, when used with various underlying surfaces in China, the scheme overestimates the turbulent momentum flux and the sensible heat flux. Based on observations of surface fluxes in China, we attempt to improve the MYNN model by modifying the parameters and representation of the turbulence scale. Closure constants and empirical expressions in the diagnostic equation are chosen first, and an additional component of the turbulent heat flux is considered in the potential temperature prognostic equation to improve the surface heat-flux modelling. The modified MYNN scheme is incorporated into a three-dimensional mesoscale model and is evaluated using various underlying surface observations. Amelioration of the surface turbulent fluxes is confirmed at five observational sites in China over different land-use types.  相似文献   

9.
Extended sheets of stratocumulus (Sc) in the upper part of the atmospheric boundary layer (ABL) often occur under appropriate meteorological conditions. These cloud decks are important both in climate studies and in weather forecasting. We review the current knowledge of the turbulent structure of the ABL capped by a cloud deck, in the light of recent observations and model studies. The most important physical processes determining this structure are longwave radiative cooling at cloud top, shortwave radiative wanning by absorption in the cloud, surface buoyancy flux, and wind shear in the ABL. As a result, turbulence can cause entrainment against the buoyancy jump at cloud top. In cases where only longwave radiative fluxes and surface buoyancy fluxes are important, the turbulent structure is relatively well understood. When shortwave radiative fluxes and/or wind shear are also important, the resulting turbulent structure may change considerably. A decoupling of the cloud from the sub-cloud layer or of the top of the cloud from the rest of the ABL is then regularly observed. In no cases are the details of the entrainment at cloud top understood well enough to derive a relatively simple formulation that is consistent with observations. Cloud-top entrainment instability may lead to the break-up of a cloud deck (but also to cloud deepening). The role of mesoscale circulations in determining fractional cloudiness is not yet well understood.  相似文献   

10.
The need for a well-defined lower boundary condition for atmospheric numerical models is well documented. This paper describes the formulation of a land surface parameterization, which will be used in atmospheric boundary-layer and mesoscale numerical models. The land surface model has three soil layers for the prediction of soil moisture and soil temperature. Model soil properties depend on soil texture and moisture content. A homogeneous distribution of vegetation is also included, so that transpiration may be included, as well as the interception of precipitation by vegetation elements. The simulated vegetation also affects the mean surface albedo and roughness characteristics.First ISLSCP Field Experiment (FIFE) data are used to verify the model. Three cases during the growing season were chosen, each case having different amounts of vegetation cover. Stand alone simulations, where observations of atmospheric and radiation variables are input to the land surface model, were performed. These simulations show that the model is able to reproduce observed surface energy budgets and surface temperatures reasonably well. The RMS differences between modeled and obsered turbulent fluxes of heat and moisture are quite comparable to those reported by more detailed land surface models.  相似文献   

11.
A simple parameterization of land surface processes, amenable to the structure of a two-layer soil model, including a representation of the vegetation, has been designed for use in meteorological models. Prior to implementation in a mesoscale model, it is necessary to check the components and to verify the good working order of the parameterization as a whole. The aims of this paper then are: (i) evaluation and a sensitivity study of the various components of the model, specifying the needed accuracy for the parameters; (ii) micrometeorological validation of the model against the HAPEX-MOBILHY data set.First, we present the basic scheme. The focus is on the parameterization of surface resistance, and especially on its relationship with soil moisture.A sensitivity study is then performed through a set of one-dimensional simulations which allow a full interaction between the ground and the atmosphere. Above bare ground, it is shown that both soil texture and initial moisture greatly influence the outcome of the simulation. Latent heat flux ranges from that associated with potential evaporation through a switch-like behavior to that of dry soil. Next, the effects of transpiring vegetation canopies on the physical processes involved and the surface energy balance are examined. The sensitivity of the latent heat flux to changes in the soil and canopy parameters is emphazised; the major influence of the initial mean soil moisture and of the vegetation cover is pointed out. Finally, the evolution of the boundary layer in response to various surface conditions is studied.A validation of the land surface scheme is conducted through daily cycles during cloudless days. Simulated turbulent fluxes are successfully compared to micrometeorological measurements over a maize field at different growth stages. Over a pine forest, the correct simulation of the turbulent fluxes is obtained with an adequate parameterization of the surface resistance accounting for the atmospheric moisture deficit.  相似文献   

12.
Land-surface heterogeneity effects on the subgrid scale of regional climate and numerical weather prediction models are of vital interest for the energy and mass exchange between the surface and the atmospheric boundary layer. High-resolution numerical model simulations can be used to quantify these effects, and are a tool used to obtain area-averaged surface fluxes over heterogeneous land surfaces. We present high-resolution model simulations for the LITFASS area near Berlin during the LITFASS-2003 experiment, which were carried out using the non-hydrostatic model FOOT3DK of the University of Köln with horizontal resolutions of 1 km and 250 m. The LITFASS-2003 experimental dataset is used for comparison. The screen level quantities show good quality for the simulated pressure, temperature, humidity and wind speed and direction. Averaged over the four week experimental period, simulated surface energy fluxes at land stations show a small bias for the turbulent heat fluxes and an underestimation of the net radiation caused by excessive cloudiness in the simulations. For eight selected days with low cloud amounts, the net radiation bias is close to zero, but the sensible heat flux shows a strong positive bias. Large differences are found for latent heat fluxes over a lake, which are partly due to local effects on the measurements, but an additional problem seems to be the overestimation of the turbulent exchange under stable conditions in the daytime internal boundary layer over the lake. In the area average over the LITFASS area of 20 ×  20 km2, again a strong positive bias of 70 W m?2 for the sensible heat is present. For the low soil moisture conditions during June 2003, the simulation of the turbulent heat fluxes is sensitive to variations in the soil type and its hydrological properties. Under these conditions, the supply of ground water to the lowest soil layer should be accounted for. Different area-averaging methods are tested. The experimental set-up of the LITFASS-2003 experiment is found to be well suited for the computation of area-averaged turbulent heat fluxes.  相似文献   

13.
A dataset collected during a measurement campaign in the middle of the Po Valley, Italy, is used to investigate the boundary-layer structure in stable conditions. Empirical formulations for temperature and wind profiles derived from Monin–Obukhov similarity theory are used as regression curves to fit radiosounding profiles in the lower half of the boundary-layer. The best fitting parameters of the regression are then compared to the surface turbulent fluxes as measured by a co-located sonic anemometer. This comparison shows significant discrepancies and supports earlier results showing that surface fluxes, in the limit of high stability, are not adequate scalings for mean profiles. The most evident differences are found for cases for which the bulk Richardson number turns out to be quite large. One of the practical consequences is that boundary-layer height diagnostic formulations that mainly rely on surface fluxes are in disagreement with those obtained by inspecting the thermodynamic profiles recorded during the radiosounding ascent. Moreover the incorrect scaling of similarity profiles in stable conditions leads to the erroneous diagnosis of 2-m air temperatures used in numerical weather prediction validation.  相似文献   

14.
The importance of soil moisture inputs and improved model physics in the prediction of the daytime boundary-layer structure during the Southern Great Plains Hydrology Experiment 1997 (SGP97) is investigated using the non-hydrostatic fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model MM5. This is Part II of a two-part study examining the relationship of surface heterogeneity to observed boundary-layer structure. Part I focuses on observations and utilizes a simple model while Part II uses observations and MM5 modelling. Soil moisture inputs tested include a lookup table based on soil type and season, output from an offline land-surface model (LSM) forced by atmospheric observations, and high-resolution ( 800 m) airborne microwave remotely sensed data. Model physics improvements are investigated by comparing an LSM directly coupled with the MM5 to a simpler force-restore method at the surface. The scale of land surface heterogeneities is compared to the scale of their effects on boundary-layer structure.The use of more detailed soil moisture fields allowed the MM5 to better represent the large-scale (hundreds of km) and small-scale (tens of km) horizontal gradients in surface-layer weather and, to a lesser degree, the atmospheric boundary-layer (ABL) height, which was evaluated against observations measured by differential absorption lidar (DIAL). The benefits of coupling an LSM to the MM5 were not readily evident in this summertime case, with the model having particular difficulty simulating the timing of maximum surface fluxes while underestimating the depth of the mixed layer.  相似文献   

15.
Eight years (1980–1987) of Wake Island rawinsonde data are used to derive atmospheric boundary layer (ABL) depth, integrated boundary-layer moisture, and a measure of boundary-layer ageostrophy. The variability in these processes controls the accumulation of moisture and heat in the tradewind regions and their transport to regions of intense convection. Preliminary analyses using different methods reveal quasi-periodic signals in these data in the 30–60 days range. Cross correlation calculations in this intraseasonal range show that these ABL variables are coherent with each other and with the low-level flow. The integrated ABL variables and the ABL height exhibit local in-phase relationships. At higher frequencies, the analyses show intense diurnal variation of boundary-layer height but only a weak diurnal signal in integrated ABL properties. At the lower frequency range, the analyses show a significant reduction in the amplitude of the seasonal and intraseasonal variation in ageostrophy during the strong El-Niño event of 1982/1983. The results clearly establish a relationship between integrated water vapour and divergent ABL processes (Ekman pumping/suction) in which shallower (deeper) ABLs are associated with mass and moisture divergence (convergence) and higher (lower) sea-level pressure. A possible interpretation in terms of a remote dynamic response of the trade inversion and ABL processes to equatorial deep convection is suggested.  相似文献   

16.
Land-use practices such as deforestation or agricultural management may affect regional climate, ecosystems and water resources. The present study investigates the impact of surface heterogeneity on the behaviour of the atmospheric boundary layer (ABL), at a typical spatial scale of 1 km. Large-eddy simulations, using an interactive soil–vegetation–atmosphere surface scheme, are performed to document the structure of the three-dimensional flow, as driven by buoyancy forces, over patchy terrain with different surface characteristics (roughness, soil moisture, temperature) on each individual patch. The patchy terrain consists of striped and chessboard patterns. The results show that the ABL strongly responds to the spatial configuration of surface heterogeneities. The stripe configuration made of two patches with different soil moisture contents generates the development of a quasi- two-dimensional inland breeze, whereas a three-dimensional divergent flow is induced by chessboard patterns. The feedback of such small-scale atmospheric circulations on the surface fluxes appears to be highly non-linear. The surface sensible and latent heat fluxes averaged over the 25-km2 domain may vary by 5% with respect to the patch arrangement.  相似文献   

17.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

18.
Turbulence structures of high Reynolds number flow in the near-neutral atmospheric boundary layer (ABL) are investigated based on observations at Shionomisaki and Shigaraki, Japan. A Doppler sodar measured the vertical profiles of winds in the ABL. Using the integral wavelet transform for the time series of surface wind data, the pattern of a descending high-speed structure with large vertical extent (from the surface to more than 200-m level) is depicted from the Doppler sodar data. Essentially this structure is a specific type of coherent structure that has been previously shown in experiments on turbulent boundary-layer flows. Large-scale high-speed structures in the ABL are extracted using a long time scale (240 s) for the wavelet transform. The non-dimensional interval of time between structures is evaluated as 3.0–6.2 in most cases. These structures make a large contribution to downward momentum transfer in the surface layer. Quadrant analyses of the turbulent motion measured by the sonic anemometer (20-m height) suggest that the sweep motion (high-speed downward motion) plays a substantial role in the downward momentum transfer. In general, the contribution of sweep motions to the momentum flux is nearly equal to that of ejection motions (low-speed upward motions). This contribution of sweep motions is related to the large-scale high-speed structures.  相似文献   

19.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

20.
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude and vertical extent of the jet and leads to better agreement between analytical and simulated wind-speed profiles. Over a range of different inversion strengths and surface heat fluxes, we also find good agreement between the performed simulations and models of the equilibrium boundary-layer height, and of the budget of turbulent kinetic energy integrated across the boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号