首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Research on people-place relations, specifically place attachment and place identity, is beginning to make an important contribution to understanding human responses to climate change. However, to date there has been a dearth of research on how place attachments at multiple scales, particularly the global, and individual level ideological beliefs combine to influence climate change attitudes and opinions. To address these gaps, survey data was collected from a representative sample of Australian citizens (N = 1147), capturing attachments at neighbourhood, city/town, state/territory, country and global scales, as well as a range of climate change belief and individual difference measures. Results show the importance of the interplay between national and global place attachments. Individuals expressing stronger global than national attachments were more likely to attribute climate change to anthropogenic causes, to oppose hierarchy-enhancing myths that legitimize climate inaction, and to perceive positive economic impacts arising from climate change responses, in comparison to individuals indicating stronger national over global place attachments. Individuals with stronger global than national attachments were more likely to be female, younger, and self-identify as having no religion, to be more likely to vote Green and to be characterized by significantly lower levels of right wing authoritarian and social dominance beliefs. Right wing authoritarian and social dominance beliefs mediated the effects of place attachments upon climate change skepticism. Explanations for the findings and implications for future research are discussed.  相似文献   

2.
Climate output from the UK Hadley Centre's HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO2, were input (offline) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate.Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y−1 in the 1990s to about 65 PgC y−1 in the 2080s (about 58 PgC y−1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y−1 in the 1990s to about 3.6 PgC y−1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes — despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s.  相似文献   

3.
Global agroecosystems can contribute to both climate change mitigation and biodiversity conservation, and market mechanisms provide a highly prospective means of achieving these outcomes. However, the ability of markets to motivate the supply of carbon sequestration and biodiversity services from agricultural land is uncertain, especially given the future changes in environmental, economic, and social drivers. We quantified the potential supply of these services from the intensive agricultural land of Australia from 2013 to 2050 under four global outlooks in response to a carbon price and biodiversity payment scheme. Each global outlook specified emissions pathways, climate, food demand, energy price, and carbon price modeled using the Global Integrated Assessment Model (GIAM). Using a simplified version of the Land Use Trade-Offs (LUTO) model, economic returns to agriculture, carbon plantings, and environmental plantings were calculated each year. The supply of carbon sequestration and biodiversity services was then quantified given potential land use change under each global outlook, and the sensitivity of the results to key parameters was assessed. We found that carbon supply curves were similar across global outlooks. Sharp increases in carbon sequestration supply occurred at carbon prices exceeding 50 $ tCO2−1 in 2015 and exceeding 65 $ tCO2−1 in 2050. Based on GIAM-modeled carbon prices, little carbon sequestration was expected at 2015 under any global outlook. However, at 2050 expected carbon supply under each outlook differed markedly, ranging from 0 to 189 MtCO2 yr−1. Biodiversity services of 3.32% of the maximum may be achieved in 2050 for a 1 $B investment under median scenario settings. We conclude that a carbon market can motivate supply of substantial carbon sequestration but only modest amounts of biodiversity services from agricultural land. A complementary biodiversity payment can synergistically increase the supply of biodiversity services but will not provide much additional carbon sequestration. The results were sensitive to global drivers, especially the carbon price, and the domestic drivers of adoption hurdle rate and agricultural productivity. The results can inform the design of an effective national policy and institutional portfolio addressing the dual objectives of climate change and biodiversity conservation that is robust to future uncertainty in both national and global drivers.  相似文献   

4.
In this paper we discuss the importance of framing the question of public acceptance of sustainable energy transitions in terms of values and a ‘whole-system’ lens. This assertion is based on findings arising from a major research project examining public values, attitudes and acceptability with regards to whole energy system change using a mixed-method (six deliberative workshops, n = 68, and a nationally representative survey, n = 2441), interdisciplinary approach. Through the research we identify a set of social values associated with desirable energy futures in the UK, where the values represent identifiable cultural resources people draw on to guide their preference formation about particular aspects of energy system change. As such, we characterise public perspectives as being underpinned by six value clusters relating to efficiency and wastefulness, environment and nature, security and stability, social justice and fairness, autonomy and power, and processes and change. We argue that this ‘value system’ provides a basis for understanding core reasons for public acceptance or rejection of different energy system aspects and processes. We conclude that a focus on values that underpin more specific preferences for energy system change brings insights that could provide a basis for improved dialogue, more robust decision-making, and for anticipating likely points of conflict in energy transitions.  相似文献   

5.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

6.
Changes in land cover affect climate through the surface energy and moisture budgets, but these biogeophysical impacts of land use have not yet been included in General Circulation Model (GCM) simulations of 20th century climate change. Here, the importance of these effects was assessed by comparing climate simulations performed with current and potential natural vegetation. The northern mid-latitude agricultural regions were simulated to be approximately 1–2 K cooler in winter and spring in comparison with their previously forested state, due to deforestation increasing the surface albedo by approximately 0.1 during periods of snow cover. Some other regions such as the Sahel and India experienced a small warming due to land use. Although the annual mean global temperature is only 0.02 K lower in the simulation with present-day land use, the more local temperature changes in some regions are of a similar magnitude to those observed since 1860. The global mean radiative forcing by anthropogenic surface albedo change relative to the natural state is simulated to be −0.2 Wm2, which is comparable with the estimated forcings relative to pre-industrial times by changes in stratospheric and tropospheric ozone, N2O, halocarbons, and the direct effect of anthropogenic aerosols. Since over half of global deforestation has occurred since 1860, simulations of climate since that date should include the biogeophysical effects of land use.  相似文献   

7.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

8.
How individuals perceive climate change is linked to whether individuals support climate policies and whether they alter their own climate-related behaviors, yet climate perceptions may be influenced by many factors beyond local shifts in weather. Infrastructure designed to control or regulate natural resources may serve as an important lens through which people experience climate, and thus may influence perceptions. Likewise, perceptions may be influenced by personal beliefs about climate change and whether it is human-induced. Here we examine farmer perceptions of historical climate change, how perceptions are related to observed trends in regional climate, how perceptions are related to the presence of irrigation infrastructure, and how perceptions are related to beliefs and concerns about climate change. We focus on the regions of Marlborough and Hawke’s Bay in New Zealand, where irrigation is utilized on the majority of cropland. Data are obtained through analysis of historical climate records from local weather stations, interviews (n = 20), and a farmer survey (n = 490). Across both regions, no significant historical trends in annual precipitation and summer temperatures since 1980 are observed, but winter warming trends are significant at around 0.2–0.3 °C per decade. A large fraction of farmers perceived increases in annual rainfall despite instrumental records indicating no significant trends, a finding that may be related to greater perceived water availability associated with irrigation growth. A greater fraction of farmers perceived rainfall increases in Marlborough, where irrigation growth has been most substantial. We find those classes of farmers more likely to have irrigation were also significantly more likely to perceive an increase in annual rainfall. Furthermore, we demonstrate that perceptions of changing climate – regardless of their accuracy – are correlated with increased belief in climate change and an increased concern for future climate impacts. Those farmers that believe climate change is occurring and is human induced are more likely to perceive temperature increases than farmers who believe climate change is not occurring and is not human induced. These results suggest that perceptions are influenced by a variety of personal and environmental factors, including infrastructure, which may in turn alter decisions about climate adaptation.  相似文献   

9.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   

10.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

11.
Imagery plays a central role in climate change communication. But whereas research on the verbal communication of climate change has proliferated, far fewer studies have focused on visual communication. Correspondingly, relatively little is known about how to effectively engage the public using the visual medium. The current research is the first mixed methods, cross-national investigation of public perceptions of climate images, with a focus on photographic climate change imagery. Four structured discussion groups in the UK and Germany (N = 32) and an international survey with an embedded experiment in the UK, Germany and the US (N = 3014) were conducted to examine how different types of climate change imagery were evaluated. The qualitative research pointed to the importance of the perceived authenticity and credibility of the human subjects in climate images, as well as widespread negativity towards images depicting protests and demonstrations. Images of climate ‘solutions’ produced positive emotional responses in the survey and were less polarizing for climate change skeptics, but they were also the least motivating of action. Familiar climate images (such as a polar bear on melting ice) were easily understood in the survey (and evaluated positively as a consequence) but viewed with cynicism in discussion groups. We present a detailed discussion of these and other key findings in this paper and describe a novel application of the data through an online image library for practitioners which accompanies the research (www.climatevisuals.org).  相似文献   

12.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

13.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

14.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

15.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

16.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

17.
Past research suggests that how we perceive risk can be related to how we attribute responsibility for risk-related issues, such as climate change; however, a gap in research lies in exploring possible connections between attribution of responsibility, risk perception, and information processing. Using the Risk Information Seeking and Processing model, this study fills this gap by examining how RISP-based variables are related to information processing and whether attribution of responsibility for mitigating climate change influences communication behaviors that are often predicted by elevated risk perceptions. Undergraduates at two large research universities (N = 572) were randomly assigned to read one of two newspaper articles that emphasized either individual responsibility (by highlighting personal actions) or societal responsibility (by highlighting government policy) for climate change mitigation. Results indicate that subjects in the individual responsibility condition were significantly more likely to process the message in a systematic manner; however, attribution of responsibility did not interact with risk perception to influence systematic processing. Moreover, attitudes toward climate change information and negative affect mediated the relationship between other key variables and systematic processing. These and other findings suggest that strategic communication about climate change may benefit from emphasizing individual responsibility to attract more attention from diverse audiences and to promote deeper thinking about the issue. Additional theoretical implications are presented.  相似文献   

18.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

19.
《Atmospheric Research》2008,87(3-4):297-314
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

20.
This study presents the first appraisal of the socio-economic impacts of river floods in the European Union in view of climate and socio-economic changes. The assessment is based on two trajectories: (a) no adaptation, where the current levels of protection are kept constant, and (b) adaptation, where the level of protection is increased to defend against future flooding events. As a basis for our analysis we use an ensemble-based pan-European flood hazard assessment for present and future conditions. Socio-economic impacts are estimated by combining flood inundation maps with information on assets exposure and vulnerability. Ensemble-based results indicate that current expected annual population affected of ca. 200,000 is projected to increase up to 360,000 due to the effects of socio-economic development and climate change. Under the no adaptation trajectory current expected annual damages of €5.5 billion/year are projected to reach €98 billion/year by the 2080s due to the combined effects of socio-economic and climate change. Under the adaptation trajectory the avoided damages (benefits) amount to €53 billion/year by the 2080s. An analysis of the potential costs of adaptation associated with the increase in protection suggests that adaptation could be highly cost-effective. There is, however, a wide range around these central numbers reflecting the variability in projected climate. Analysis at the country level shows high damages, and by association high costs of adaptation, in the United Kingdom, France, Italy, Romania, Hungary and Czech Republic. At the country level, there is an even wider range around these central values, thus, pointing to a need to consider climate uncertainty in formulating practical adaptation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号