首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
Changes in land cover affect climate through the surface energy and moisture budgets, but these biogeophysical impacts of land use have not yet been included in General Circulation Model (GCM) simulations of 20th century climate change. Here, the importance of these effects was assessed by comparing climate simulations performed with current and potential natural vegetation. The northern mid-latitude agricultural regions were simulated to be approximately 1–2 K cooler in winter and spring in comparison with their previously forested state, due to deforestation increasing the surface albedo by approximately 0.1 during periods of snow cover. Some other regions such as the Sahel and India experienced a small warming due to land use. Although the annual mean global temperature is only 0.02 K lower in the simulation with present-day land use, the more local temperature changes in some regions are of a similar magnitude to those observed since 1860. The global mean radiative forcing by anthropogenic surface albedo change relative to the natural state is simulated to be −0.2 Wm2, which is comparable with the estimated forcings relative to pre-industrial times by changes in stratospheric and tropospheric ozone, N2O, halocarbons, and the direct effect of anthropogenic aerosols. Since over half of global deforestation has occurred since 1860, simulations of climate since that date should include the biogeophysical effects of land use.  相似文献   

2.
《Climate Policy》2001,1(2):229-249
This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/t C. In the cases that are most conducive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies. We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/t C, or as much as 300% at US$ 100/t C.A striking finding comes from our examination of the potential magnitude of the “free-rider” problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral — a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250–600 Mt C through the end of the first budget period in 2012. This represents 10–23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities.  相似文献   

3.
Coral reefs and other coastal ecosystems such as seagrasses and mangroves are widely recognized to provide protection against the devastating effects of strong waves associated with tsunamis and storms. The predicted warming climate brings to fore the role of these ecosystems in providing protection against stronger typhoons that can result in more devastating waves of greater amplitude. We performed a model simulation of storm generated waves on a Philippine reef, which is located along the path of tropical storms, i.e., at least 10 typhoons on the average pass through the study site yearly. A model to simulate wave propagation was developed using Simulating Waves Nearshore (SWAN) and DELFT3D-WAVE computer simulation software. Scenarios involving local monsoonal wind forcing and storm conditions were simulated. In addition, as climate change may also result to increased relative sea level, a 0.3 m and 1 m rise in sea level scenarios were also used in the wave model simulations. Results showed that the extensive reef system in the site helped dissipate wave energy that in turn reduced wave run-up on land. A significant reduction in wave energy was observed in both climate change, i.e., stronger wind and higher sea level, and non-climate change scenarios. This present study was conducted in a reef whose coral cover is in excellent condition (i.e., 50 to 80% coral cover). Estimates of coral reef growth are in the same order of magnitude as estimates of relative sea level rise based on tide gauge and satellite altimeter data, thus it is possible that the role of reefs in attenuating wave energy may be maintained if coral reef growth can keep up with the change in sea level. Nonetheless, to maintain reef growth, it is imperative to manage coral reef ecosystems sustainably and to eliminate the stressors that are within human control. Minimizing activities such as illegal and destructive blast and poison fishing methods, pollution and siltation, is crucial to minimize the impacts of high-energy waves that may increase with climate change.  相似文献   

4.
Global agroecosystems can contribute to both climate change mitigation and biodiversity conservation, and market mechanisms provide a highly prospective means of achieving these outcomes. However, the ability of markets to motivate the supply of carbon sequestration and biodiversity services from agricultural land is uncertain, especially given the future changes in environmental, economic, and social drivers. We quantified the potential supply of these services from the intensive agricultural land of Australia from 2013 to 2050 under four global outlooks in response to a carbon price and biodiversity payment scheme. Each global outlook specified emissions pathways, climate, food demand, energy price, and carbon price modeled using the Global Integrated Assessment Model (GIAM). Using a simplified version of the Land Use Trade-Offs (LUTO) model, economic returns to agriculture, carbon plantings, and environmental plantings were calculated each year. The supply of carbon sequestration and biodiversity services was then quantified given potential land use change under each global outlook, and the sensitivity of the results to key parameters was assessed. We found that carbon supply curves were similar across global outlooks. Sharp increases in carbon sequestration supply occurred at carbon prices exceeding 50 $ tCO2−1 in 2015 and exceeding 65 $ tCO2−1 in 2050. Based on GIAM-modeled carbon prices, little carbon sequestration was expected at 2015 under any global outlook. However, at 2050 expected carbon supply under each outlook differed markedly, ranging from 0 to 189 MtCO2 yr−1. Biodiversity services of 3.32% of the maximum may be achieved in 2050 for a 1 $B investment under median scenario settings. We conclude that a carbon market can motivate supply of substantial carbon sequestration but only modest amounts of biodiversity services from agricultural land. A complementary biodiversity payment can synergistically increase the supply of biodiversity services but will not provide much additional carbon sequestration. The results were sensitive to global drivers, especially the carbon price, and the domestic drivers of adoption hurdle rate and agricultural productivity. The results can inform the design of an effective national policy and institutional portfolio addressing the dual objectives of climate change and biodiversity conservation that is robust to future uncertainty in both national and global drivers.  相似文献   

5.
Scientists have argued that no more than 275 GtC (IPCC, 2013) of the world’s reserves of fossil fuels of 746 GtC can be produced in this century if the world is to restrict anthropogenic climate change to ≤2 °C. This has raised concerns about the risk of these reserves becoming “stranded assets” and creating a dangerous “carbon bubble” with serious impacts on global financial markets, leading in turn to discussions of appropriate investor and consumer actions. However, previous studies have not always clearly distinguished between reserves and resources, nor differentiated reserves held by investor-owned and state-owned companies with the capital, infrastructure, and capacity to develop them in the short term from those held by nation-states that may or may not have such capacity. This paper analyzes the potential emissions of CO2 and methane from the proved reserves as reported by the world's largest producers of oil, natural gas, and coal. We focus on the seventy companies and eight government-run industries that produced 63% of the world’s fossil fuels from 1750 to 2010 (Heede, 2014), and have the technological and financial capacity to develop these reserves. While any reserve analysis is subject to uncertainty, we demonstrate that production of these reported reserves will result in emissions of 440 GtC of carbon dioxide, or 160% of the remaining 275 GtC carbon budget. Of the 440 GtC total, the 42 investor-owned oil, gas, and coal companies hold reserves with potential emissions of 44 GtC (16% of the remaining carbon budget, hereafter RCB), whereas the 28 state-owned entities possess reserves of 210 GtC (76% of the RCB). This analysis suggests that what may be needed to prevent dangerous anthropogenic interference (DAI) with the climate system differs when one considers the state-owned entities vs. the investor-owned entities. For the former, there is a profound risk involved simply in the prospect of their extracting their proved reserves. For the latter, the risk arises not so much from their relatively small proved reserves, but from their on-going exploration and development of new fossil fuel resources. For preventing DAI overall, effective action must include the state-owned companies, the investor-owned companies, and governments. However, given that the majority of the world's reserves are coal resources owned by governments with little capacity to extract them in the near term, we suggest that the more immediate urgency lies with the private sector, and that investor and consumer pressure should focus on phasing out these companies’ on-going exploration programs.  相似文献   

6.
Carbon sequestration through ecological restoration programs is an increasingly important option to reduce the rise of atmospheric carbon dioxide concentration. China’s Grain for Green Program (GGP) is likely the largest centrally organized land-use change program in human history and yet its carbon sequestration benefit has yet to be systematically assessed. Here we used seven empirical/statistical equations of forest biomass carbon sequestration and five soil carbon change models to estimate the total and decadal carbon sequestration potentials of the GGP during 1999–2050, including changes in four carbon pools: aboveground biomass, roots, forest floor and soil organic carbon. The results showed that the total carbon stock in the GGP-affected areas was 682 Tg C in 2010 and the accumulative carbon sink estimates induced by the GGP would be 1697, 2635, 3438 and 4115 Tg C for 2020, 2030, 2040 and 2050, respectively. Overall, the carbon sequestration capacity of the GGP can offset about 3%–5% of China’s annual carbon emissions (calculated using 2010 emissions) and about 1% of the global carbon emissions. Afforestation by the GGP contributed about 25% of biomass carbon sinks in global carbon sequestration in 2000–2010. The results suggest that large-scale ecological restoration programs such as afforestation and reforestation could help to enhance global carbon sinks, which may shed new light on the carbon sequestration benefits of such programs in China and also in other regions.  相似文献   

7.
This paper evaluates the impacts of climate change to European economies under an increase in global mean temperature at +2 °C and +4 °C. It is based on a summary of conclusions from available studies of how climate change may affect various sectors of the economies in different countries. We apply a macroeconomic general equilibrium model, which integrates impacts of climate change on different activities of the economies. Agents adapt by responding to the changes in market conditions following the climatic changes, thus bringing consistency between economic behaviour and adaptation to climate change. Europe is divided into 85 sub-regions in order to capture climate variability and variations in vulnerabilities within countries. We find that the impacts in the +2 °C are moderate throughout Europe, with positive impacts on GDP in some sub-regions and negative impacts down to 0.1 per cent per year in others. At +4 °C, GDP is negatively affected throughout Europe, and most substantially in the southern parts, where it falls by up to 0.7 per cent per year in some sub-regions. We also find that climate change causes differentiations in wages across Europe, which may cause migration from southern parts of Europe to northern parts, especially to the Nordic countries.  相似文献   

8.
We compare changes in low birth weight and child malnutrition in 13 African countries under projected climate change versus socio-economic development scenarios. Climate scenarios are created by linking surface temperature gradients with declines in seasonal rainfall sea along with warming values of 1 °C and 2 °C. Socio-economic scenarios are developed by assigning regionally specific changes in access to household electricity and mother's education. Using these scenarios, in combination with established models of children's health, we investigate and compare the changes in predicted health outcomes. We find that the negative effects of warming and drying on child stunting could be mitigated by positive development trends associated with increasing mothers’ educational status and household access to electricity. We find less potential for these trends to mitigate how warming and drying trends impact birth weights. In short, under warming and drying, the risk of more malnourished children is greater than the risk of more children with low birth weights, but increases in child malnutrition could be averted in regions that increase access to educational resources and basic infrastructure.  相似文献   

9.
Issues concerning what measures should be adopted to achieve a sustainable world with less carbon dioxide emission and in what magnitude should we reduce our emission have been on agenda in both international negotiations and countries’ policy making aimed at coping with potential global climate change. These issues cannot be easily addressed unless comprehensive understanding about the countries’ status quo as well as historical relationship between economic development and carbon dioxide emission are gained. In this paper, we examine the historical relationship between economic development and carbon dioxide emission; the ex ante restrictions on function forms and the poorly handled robustness issues rife in economics literature are synthetically addressed. Evidence from recent four decades indicates that per capita carbon dioxide emission first significantly and monotonously increase at low income level and flattens after per capita income reaches at about 22,000 $ (2005 constant price). We perform various robustness checks by employing different data sources, different model specifications and different econometric estimates. The captured development–emission relationship is robust. Our empirical results indicate factors such as urbanization, population density, trade, energy mix and economic environment impact the absolute level of carbon dioxide emission not the overall income elasticity structure of carbon dioxide emission.  相似文献   

10.
Carbon market and climate finance schemes (e.g. the CDM, REDD+ and the Green Climate Fund) are being investigated for their ability to achieve enhanced sustainability outcomes in terrestrial forests, lowland grasslands and marine ecosystems, all which store large amounts of carbon (C). To date however climate policy discourse has largely overlooked the conservation of existing C stored in mountain grasslands and shrublands. These ecosystems provide critical ecological goods and services to humanity yet are increasingly at risk from anthropogenic stressors including agricultural intensification, mining and climate change. The absence of a global estimate for these C stocks is likely to be one reason for their exclusion from climate change policy discussions, both on a political and scientific basis. This represents a missed opportunity in two respects: firstly, by conserving and restoring existing C stocks the impacts of climate change can be lessened; and secondly, carbon finance and climate finance might provide the necessary financial support to address the aforementioned stressors. In this paper we use spatial analysis and estimate there to be between 60.5 Pg C and 82.8 Pg of C contained within biomass and soils of the world's mountain grasslands and shrublands. To put this in perspective, globally tropical Savannas and grasslands, temperate forests and tropical peatlands are estimated to contain 326–330 Pg C, 159–292 Pg C and 88.6 Pg C respectively. Our review of existing empirical studies and of United Nations Framework Convention on Climate Change (UNFCCC) national greenhouse accounts suggests that this C is not reliably accounted for in international carbon budgets. Our estimate is the first to provide a global point of reference, useful in developing future research and in climate policy discussions. We conclude by briefly discussing how climate finance might be leveraged to support the sustainable management of these C stocks, and in so doing uphold the other important socioeconomic benefits provided to humanity.  相似文献   

11.
The first decade of the new millennium saw a boom in rubber prices. This led to rapid and widespread land conversion to monoculture rubber plantations in continental SE Asia, where natural rubber production has increased >50% since 2000. Here, we analyze the subsequent spread of rubber between 2005 and 2010 in combination with environmental data and reports on rubber plantation performance. We show that rubber has been planted into increasingly sub-optimal environments. Currently, 72% of plantation area is in environmentally marginal zones where reduced yields are likely. An estimated 57% of the area is susceptible to insufficient water availability, erosion, frost, or wind damage, all of which may make long-term rubber production unsustainable. In 2013 typhoons destroyed plantations worth US$ >250 million in Vietnam alone, and future climate change is likely to lead to a net exacerbation of environmental marginality for both current and predicted future rubber plantation area. New rubber plantations are also frequently placed on lands that are important for biodiversity conservation and ecological functions. For example, between 2005 and 2010 >2500 km2 of natural tree cover and 610 km2 of protected areas were converted to plantations. Overall, expansion into marginal areas creates potential for loss-loss scenarios: clearing of high-biodiversity value land for economically unsustainable plantations that are poorly adapted to local conditions and alter landscape functions (e.g. hydrology, erosion) – ultimately compromising livelihoods, particularly when rubber prices fall.  相似文献   

12.
The threats of wide-scale coral bleaching and reef demise associated with anthropogenic (global) climate change are widely known. Less well considered is the contributing role of conditions local to the reef, in particular reef water quality, in co-determining the physiological tolerance of corals to increasing sea temperatures and declining pH. Here, the modelled benefit of reduced exposure to dissolved inorganic nitrogen (DIN) in terrestrial runoff, which raises the thermal tolerance of coastal coral communities on the central Great Barrier Reef (Australia), is considered alongside alternative future warming scenarios. The simulations highlight that an 80% reduction in DIN ‘buys’ an additional ~50–60?years of reef-building capacity for No Mitigation (‘business-as-usual’) bleaching projections. Moreover, the integrated management benefits provided by: (i) local reductions of ~50% in DIN contained in river loads, and (ii) global stabilisation of atmospheric CO2 below 450?ppm can help ensure the persistence of hard-coral-dominated reefscapes beyond 2100. The simulations reinforce the message that beyond the global imperative to mitigate future atmospheric CO2 emissions there still remains the need for effective local management actions that enhance the resistance and resilience of coral reef communities to the impacts of climate change.  相似文献   

13.
Vegetation feedback under future global warming   总被引:2,自引:0,他引:2  
It has been well documented that vegetation plays an important role in the climate system. However, vegetation is typically kept constant when climate models are used to project anthropogenic climate change under a range of emission scenarios in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Here, an atmospheric general circulation model, and an asynchronously coupled system of an atmospheric and an equilibrium terrestrial biosphere model are forced by monthly sea surface temperature and sea ice extent for the periods 2051?C2060 and 2090?C2098 as projected with 17 atmosphere?Cocean general circulation models participating in the IPCC Fourth Assessment Report, and by appropriate atmospheric carbon dioxide concentrations under the A2 emission scenario. The effects of vegetation feedback under future global warming are then investigated. It is found that the simulated composition and distribution of vegetation during 2051?C2060 (2090?C2098) differ greatly from the present, and global vegetation tends to become denser as expressed by a 21% (36%) increase in global mean leaf area index, which is most pronounced at the middle and high northern latitudes. Vegetation feedback has little effect on globally averaged surface temperature. On a regional scale, however, it induces statistically significant changes in surface temperature, in particular over most parts of continental Eurasia east of about 60°E where annual surface temperature is expected to increase by 0.1?C1.0?K, with an average of about 0.4?K for each future period. These changes can mostly be explained by changes in surface albedo resulting from vegetation changes in the context of future global warming.  相似文献   

14.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

15.
In late summer 2005 a mass coral bleaching event occurred in the Caribbean. Here we quantify coral bleaching in Barbados at six sites on the island’s sheltered west and exposed southwest coasts, including nearshore fringing and patch reefs and offshore bank reef habitats. Onset of coral bleaching occurred in late August 2005 and persisted for many months after temperatures cooled. All reef habitats and virtually all coral taxa were affected, with an average of 70.6% of all colonies bleaching. Nearshore reefs (<10 m depth) were affected more severely than offshore deeper reefs (>15 m) with an average of 80.6% of all coral colonies bleaching compared with 60.5% on the latter. Inter-species variation in susceptibility to bleaching was marked with >90% of colonies bleaching in some species whilst <10% bleached in others. Follow-up surveys revealed low coral mortality, with an overall mean of 3.8% partial colony death across all species and reefs by February 2006. However, bleached condition has persisted with a mean of 37.7% of all coral colonies still bleached after 5 1/2 months, indicating that loss of live coral is likely to continue for some time. This event represents the most severe bleaching episode ever witnessed on Barbados’ reefs and emphasises the vulnerability of small island states, with a high reliance on healthy coral reef ecosystem services, to elevated sea water temperatures associated with climate variability and global climate change.  相似文献   

16.
In this study, empirical orthogonal function was applied to analyze rainfall variability in the Nile basin based on various spatio-temporal scales. The co-occurrence of rainfall variability and the variation in selected climate indices was analyzed based on various spatio-temporal scales. From the highest to the lowest, the cumulative amount of variance explained by the first two principal components (PCs) for any selected size of the spatial domain was obtained for the annual, seasonal, and monthly rainfall series respectively. The variability in the annual rainfall of 1° × 1° spatial coverage explained by only the first PC was about 55% on average. However, this percentage reduced to about 40% on average across the study area when the size of the spatial domain was increased from 1° × 1° to 10° × 10°. The variation in climate indices was shown to explain rainfall variability more suitably at a regional than location-specific spatial scale. The magnitudes and sometimes signs of the correlation between rainfall variability and the variation in climate indices tended to vary from one time scale to another. These findings are vital in the selection of spatial and temporal scales for more considered attribution of rainfall variability across the study area.  相似文献   

17.
The U.S. road network is one of the nation's most important capital assets and is vital to the functioning of the U.S. economy. Maintaining this asset involves approximately $134 billion of government funds annually from Federal, State, and local agencies. Climate change may represent a risk or an opportunity to this network, as changes in climate stress will affect the resources necessary for both road maintenance and construction projects. This paper develops an approach for estimating climate-related changes in road maintenance and construction costs such that the current level of service provided by roads is maintained over time. We estimate these costs under a baseline scenario in which annual mean global temperature increases by 1.5 °C in 2050 relative to the historical average and a mitigation scenario under which this increase in mean temperature is limited to 1.0 °C. Depending on the nature of the changes in climate that occur in a given area, our analysis suggests that climate change may lead to a reduction in road maintenance and/or construction costs or an increase in costs. Overall, however, our analysis shows that climate change, if unchecked, will increase the annual costs of keeping paved and unpaved roads in service by $785 million in present value terms by 2050. When not discounted, this figure increases to $2.8 billion. Policies to reduce greenhouse gas emissions are estimated to reduce these costs by approximately $280 million in present value terms and by $885 million when not discounted. These costs vary substantially by region and time period, information that should be important for transportation planners at the national, state, and local levels.  相似文献   

18.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

19.
For the first time this millennium, growth in carbon emissions has slowed. Indeed, the year 2014 was the first time in 40 years that the planet saw zero growth in emissions. We examine whether this message of progress can be effective in motivating people to engage in mitigation efforts. This question dovetails with commentary suggesting that gloomy messages about climate change risk fatiguing the population, and that alternative approaches are necessary. It is also informed by work suggesting that hope is a motivating force in terms of engaging in collective action and social change. Study 1 (N = 574) showed that negative emotions were strongly related to mitigation motivation and feelings of efficacy, but hope-related emotions had a much weaker relationship with these constructs. In the main experiment (Study 2: N = 431) participants read an optimistic, pessimistic, or neutral message about the rate of progress in reducing global carbon emissions. Relative to the pessimistic message, the optimistic message reduced participants’ sense that climate change represented a risk to them, and the associated feelings of distress. Consequently, the optimistic message was less successful in increasing mitigation motivation than the pessimistic message. In sum, predictions that the optimistic message would increase efficacy did not transpire; concerns that the optimistic message would increase complacency did transpire. Recent progress in curbing global carbon emissions is welcome, but we found no evidence that messages focusing on this progress constitute an effective communication strategy.  相似文献   

20.
Palm oil production has boomed over the last decade, resulting in an expansion of the global oil palm planting area from 10 to 17 Million hectares between 2000 and 2012. Previous studies showed that a significant share of this expansion has come at the expense of tropical forests, notably in Indonesia and Malaysia, the current production centers. Governments of developing and emerging countries in all tropical regions increasingly promote oil palm cultivation as a major contributor to poverty alleviation, as well as food and energy independence. However, being under pressure from several non-governmental environmental organizations and consumers, the main palm oil traders have committed to sourcing sustainable palm oil. Against this backdrop we assess the area of suitable land and what are the limits to future oil palm expansion when several constraints are considered. We find that suitability is mainly determined by climatic conditions resulting in 1.37 billion hectares of suitable land for oil palm cultivation concentrated in twelve tropical countries. However, we estimate that half of the biophysically suitable area is already allocated to other uses, including protected areas which cover 30% of oil palm suitable area. Our results also highlight that the non-conversion of high carbon stock forest (>100 t AGB/ha) would be the most constraining factor for future oil palm expansion as it would exclude two-thirds of global oil palm suitable area. Combining eight criteria which might restrict future land availability for oil palm expansion, we find that 234 million hectares or 17% of worldwide suitable area are left. This might seem that the limits for oil palm expansion are far from being reached but one needs to take into account that some of this area might be hardly accessible currently with only 18% of this remaining area being under 2 h transportation to the closest city and that growing demand for other agricultural commodities which might also compete for this land has not been yet taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号