首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work focuses on quantitative discrimination of fault segment growth and its effect on sedimentation and stratigraphic evolution in the Tanan Depression, the Tamtsag Basin, Mongolia. Integrated seismic data sets and stratigraphic data suggest that normal faults evolve as fault segments grow, link and amalgamate to form a larger fault. Three main stages in the evolution of fault zone are recorded in the syn-rift stratigraphy. This paper applies a method to effectively discriminate the locus of fault segments by ‘three diagrams’ and quantitatively reconstruct process of fault growth by the maximum throw subtraction method. Backstripped to T23 SB event, the F1 fault comprises four hard-linked segments, and the F2 fault is divided into four soft-linked segments (F2-4 and F2-5 segments are shown by hard linkage) at the T23 structural level. The F1 and F2 fault comprise hard-linked segments at the T23-1 structural level when the F1 and the F2 are backstripped to the T22 (133.9 Ma) SB event. The F1 fault is divided into three soft-linked segments (F1-2 and F1-3 segments are shown by hard linkage), and the F2 fault is divided into four isolated fault segments at the T23-1 structural level when the F1 and the F2 is backstripped to the T23 SB event. Incorporation of paleo-fault geometry, isochron thickness map and sedimentary facies suggest that the transfer zone provided accommodation space for sediment discharge and deposition, and the depocentres were formed at the locus of maximum throw along a fault segment during its overall deposition.  相似文献   

2.
Several strike–slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike–slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips.

Evidence for the relative age of the two strike–slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults.

The orientation of the tip cracks to the main fault is 30–70° clockwise for right-lateral slip, and 20–40° counter-clockwise for left-lateral slip. The structure formed by this process of strike–slip reactivation is termed a “tree structure” because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness.

Most of the dx profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the dx profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a smaller slip followed by larger slip with opposite sense, the dx profile would be flatter with no reverse displacement at the tips. Reactivation also decreases the ratio of dmax/L since for an original right-lateral fault, left lateral reactivation will reduce the net displacement (dmax) along a fault and increase the fault length (L).

Finally we compare Crackington Haven faults with these in the Atacama system of northern Chile. The Salar Grande Fault (SGF) formed as a left-lateral fault with large displacement in its central region. Later right-lateral reactivation is preserved at the fault tips and at the smaller sub-parallel Cerro Chuculay Fault. These faults resemble those seen at Crackington Haven.  相似文献   


3.
Numerous active and inactive fissure-ridge travertines are located in the hanging wall of the Pamukkale range-front fault, a large normal fault bounding the northeast side of the Denizli Basin. A typical principal fissure-ridge comprises flanking bedded travertines dipping gently away from a nearly vertical, irregular central fissure, partially filled by vertically banded travertine. More complex ridges bear parasitic fissures and associated ridges on their flanks. Fissures roughly follow the long axes of ridge crests, some of them being divided into angular segments and others anastomosing. The traces of fissures are commonly parallel but some are oblique to one another. Fissures vary in width from a few millimeters to 5 m, and range in length from a few meters to a few kilometers.

The widths of central fissures are at a maximum near the midpoints of ridges, but decrease toward both ends, suggesting that they grew in length over time. Lateral fissure development involved the opening of both new and old cracks, some of which propagated into former process zones at crack tips. Fissures increase in width with depth either gradually or in a series of steps, depending on whether there was a uniform rate of fissure dilation during travertine deposition or episodic dilation during fracture propagation. The characteristic irregular morphology of fractures probably reflects extension-fracture propagation in differential stress fields that were weak as a consequence of location near the earth's surface. The fissures probably express a set of subsidiary extension fractures splaying from the Pamukkale range-front fault into its hanging wall.  相似文献   

4.
作为变质核杂岩构造的重要组成部分,拆离断层带内广泛发育的褶皱构造与其寄主岩石一样记录了中下地壳拆离作用过程。选取辽南变质核杂岩金州拆离断层带内褶皱构造作为研究对象,基于叶理与褶皱构造关系分析,划分了褶皱期次与阶段性;通过形态组构分析、结晶学组构分析及石英古温度计等技术方法的应用,初步分析了拆离断层内褶皱的形成机制,为辽南地区拆离作用过程提供约束。根据褶皱形成与拆离作用的时间关系,将拆离带内褶皱分为拆离前褶皱、拆离同期褶皱和拆离后褶皱;拆离作用同期的褶皱按时间早晚分为早期(a1)阶段、中期(a2)阶段、晚期(a3)阶段。不同阶段褶皱的野外形态、叶理与褶皱关系等方面的差异,以及形态组构与结晶学组构的特征,为判断和恢复褶皱的形成机制提供了佐证,揭示出拆离断层带褶皱是在纵弯压扁和顺层流变的共同作用下递进剪切变形的产物。在拆离作用过程中, a1阶段和a2阶段褶皱以纵弯、压扁褶皱作用为主,a3阶段褶皱以弯滑作用为主。褶皱作用记录了拆离断层一定温度范围内(主要集中在380~500 ℃)的变形特征,拆离作用从早期到晚期的演化整体处于相对稳定的应变状态下。对金州拆离断层带而言,在区域NW-SE向伸展过程中,还伴随着NE-SW向微弱的收缩。  相似文献   

5.
北贝加尔盆地西南端位于贝加尔盆地中部,包括Olkhon岛及其邻区,文中研究了这个区域的构造地貌格架。北贝加尔盆地西南端的构造地貌类型是由走滑构造末端的一系列雁列构造、裂谷断层及次级断层的末端复合构造控制。朝着海的方向Olkhon地区次级断层包括4个连续的末端复合构造Primorsky断层带,Buguldeika-Chernorud地堑—MaloyeMore裂谷盆地—Ushkaniy断层带,Tazheran高原—Olkhon岛鞍部和淹没的Akademichesky山脊,Olkhon断层带。这个末端构造被横向断层切为几段,其活动时间在南西最年轻,向北东逐渐加大,同时断层垂直断距从数十米增至2000余米,且断层带变得更为宽阔,也更为复杂。Pri-morsky断层带向北东从西南端简单的线性断层崖,变为断层围限的断块系统,再变为上升和沉降(盆地)块体系统,并最终汇入一个盆地之中;沿着这个方向裂谷边界断层则突然地复合于盆地构造中。这种构造地貌类型记录了断层演化的时间和空间关系,即从属于递进的沉降和加宽直至最终发育为盆地。因此其趋势是发育完好的湖盆、陆地构造直至被水淹没。陆地构造淹没趋势及没有断层围限块体的盆内构造组合可能是与犁式断层旋转相关的陆内裂谷的共同特点,并具一般裂谷的打开机制。  相似文献   

6.
Quartz vein systems developed in and adjacent to shear zones host major gold deposits in the Kambalda region of the Norseman–Wiluna greenstone belt. At the Revenge Mine, two groups of mineralised reverse shear zones formed as conjugate, near-optimally oriented sets during ESE subhorizontal shortening adjacent to a major transpressional shear system. The shear zones developed at temperatures of about 400°C in a transitional brittle–ductile regime. Deformation was associated with high fluid fluxes and involved fault-valve behaviour at transiently near-lithostatic fluid pressures. During progressive evolution of the shear system, early brittle and ductile deformation was overprinted by predominantly brittle deformation. Brittle shear failure was associated with fault dilation and the formation of fault-fill veins, particularly at fault bends and jogs. A transition from predominantly brittle shear failure to combined shear along faults and extension failure adjacent to faults occurred late during shear zone evolution and is interpreted as a response to a progressive decrease in maximum shear stress and a decrease in effective stresses. The formation of subhorizontal stylolites, locally subvertical extension veins and minor normal faults in association with thrust faulting, indicates episodic or transient reorientation of the near-field maximum principal stress from a subhorizontal to a near-vertical attitude during some fault-valve cycles. Local stress re-orientation is interpreted as resulting from near-total shear stress release and overshoot during some rupture events. Previously described fault-valve systems have formed predominantly in severely misoriented faults. The shear systems at Revenge Mine indicate that fault-valve action, and associated fluctuations in shear stress and fluid pressure, can influence the mechanical behaviour of optimally-oriented faults.  相似文献   

7.
In a rheologically layered crust, compositional layers have an upper, elasto-plastic part and a lower, viscous one. When broken, the upper elastic part undergoes flexure, which is upward for the foot-wall and downward for the hanging wall. As a consequence of bending, stresses will develop locally that can overcome the strength of the plate and, therefore, impose the migration of active fault. In the lower, viscous part of each compositional layer, rocks can potentially flow. Numerical modelling of the behaviour of a crust made up of two compositional layers, during and following extension, shows that flow can take place not only in the lower crust but also, and more importantly, in the lower part of the upper crust. The ability of crustal rocks to flow influences the style and kinematics of rifted regions. When no flow occurs, subsidence will affect the extending areas, both hanging wall and foot-wall will subside with respect to an absolute reference frame such as sea level, and there will be a strict proportionality between extension and thinning. In addition, the downward movement of the fault blocks will decrease the local stresses created in the foot-wall and increase those of the hanging wall, thereby imposing a migration of fault towards the hanging wall. This is the behaviour of extensional settings developed on stabilised crust and which evolved in a passive margin. When flow does take place, middle crustal rocks will move towards the rifting zone causing isostatically driven upward movements that will be superimposed on movements associated with crustal and lithospheric thinning. Consequently, fault blocks will move upwards and the crust will show more extension than thinning. The upward movements will decrease the stresses developed in the hanging walls and increase those of the foot-wall. Faults will then migrate towards the foot-wall. Such a mode of deformation is expected in regions with thickened crust and has its most apparent expression in core complexes.  相似文献   

8.
Study of fault growth in deep area of the Gaoyou Sag has great significance for the understanding of the structural evolution and hydrocarbon accumulation of the Gaoyou Sag. Based on high-precision 3D seismic data, the displacement-length relationship and throw data of faults are integrated to reconstruct the growth of the boundary fault and secondary faults in the eastern deep area of the Gaoyou Sag and controlling factors of the fault growth are discussed by analyzing the tectonic stress field and numerical simulation. This study revealed that the Zhen 2 boundary fault had six segments which grew independently in the Eocene Dainan Period and subsequently linked into four segments in the Eocene Sanduo Period. The Zhen 2 fault growth included two phases: short rapid lateral lengthening initially in Dainan Period, followed by a longer phase of slip accumulation and linkage of segments in the Sanduo Period. The strike of Zhen 2 fault which is widely and gently undulate kept in step with Zhen1 extensional boundary fault that controlled the structural evolution of the Subei Basin. The structure of Zhen 2 fault tips is contributed to interaction of fault segments. Two segments overlapped and linked with its neighbor by relay zone, otherwise the segments kept away from the fault and linked near the tip of the fault which interacting the growth progress. The secondary faults are linked alternatively by segments of NEE strike and EW strike and the segments of NEE strike are developed initially in the Dainan Period. Numerical simulation demonstrated that the extensional direction in the area of secondary faults is parallel to the extensional direction of the region and barely influenced by the Zhen 2 boundary fault. The orientational change of the tectonic stress field between the Paleocene and Eocene led to the linkage of secondary faults, which means that the segments of NEE strike are developed by pre-existing fabrics of the Paleocene and the segments of EW strike linked the NEE segments later in the Eocene. ©, 2015, Science Press. All right reserved.  相似文献   

9.
In 2010, a water inrush accident through a fault with a high flow rate occurred at Tianzhuang coal mine in Jining, Shandong Province, China, which was subject to the fault excavation. Grouting is an important treatment method before and after water inrush accidents. In this paper, the evolution of this water inrush accident is studied, and the effective treatment method is presented. The obtained results indicate that groundwater from Ordovician limestone aquifer 28.5 m below the floor flowed into the roadway through the fault zone. Results also show that this water inrush through the fault zone can be divided into a flow rate steady increase phase, a rapidly increase phase, a decrease phase, and a steady phase. The first two phases resulted from permeability increase of the fault, which was caused by seepage failure, and water level of the aquifer led to last two phases. Additionally, grouting using the ground borehole successfully controlled this water inrush accident, and it is proven to be a valid method.  相似文献   

10.
贵州东南部位于盖层极不发育的榕江加里东褶皱带内,为查明该区域内的地应力状态,在贵州省黔南州境内进行了7个钻孔的水压致裂地应力测量工作,同时结合贵州西部已有研究结果和贵州西北部1个钻孔的地应力测量资料,对贵州东南部与西部和西北部的地应力分布差异进行了对比研究,最后结合断层的活动性质以及Byerlee准则探讨了测孔区域断层的稳定性,结果表明:水平主应力在研究区占主导地位,最大水平主应力方向表现为北西向;根据安德森断层理论,三向主应力的相对大小有利于逆断层和走滑断层的活动,这与研究区发育的活动断层性质相对应;最大和最小水平主应力的线性拟合结果表明,研究区水平主应力的梯度大于黔西煤层地区、广西盆地东北部和全国的地应力梯度值,最大水平主应力的值在相近深度上大于黔西、黔西北地区和广西盆地东北部;三都断裂带附近存在较高的构造应力,μm值(最大剪应力与平均主应力的比值)较高,表明断层处于摩擦极限平衡状态;而三江-融安断裂两侧的构造作用存在较为明显的差异,西侧的构造作用强于东侧;虽然部分钻孔内的μm值都处于高值,但区域应力方向与断层多以较大角度相交,因此断层是稳定的,这与研究区的地震活动性相吻合。   相似文献   

11.
This study continues the work by Mikhail Gzovsky on geological (tectonophysical) criteria for seismic risk. It is suggested to perform seismic-risk zoning according to parameters of normal and shear stresses on fault planes converted from results of tectonophysical stress reconstructions. The approach requires the knowledge of both dip and strike of the respective fault segments. Slip geometry is estimated from stress tensor, assuming that it is directed along shear stress. The suggested approach is applied to faults in the northern Tien Shan, and the current stress parameters are reconstructed using source mechanisms of catalogued earthquakes recorded by the KNET seismological network of the RAS Science Station in Bishkek. Stress modeling is performed by the method of cataclastic analysis providing constraints on stress ellipsoids, as well as on relations between the spherical and deviatoric components of the stress tensor. Plotted on the Mohr diagram, the fault stress points allow estimating whether the respective fault segments are close to the critical state (brittle failure). The suggested seismic-risk zoning of faults in the northern Tien Shan reveals up to 25 km long hazardous fault segments.  相似文献   

12.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

13.
在滑坡稳定性分析和设计计算中往往选用滑带土的残余强度值,但许多研究发现滑带土在稳定期会有自愈合现象发生,表现为抗剪强度的提高。对于以蠕滑为主的红层滑坡,自愈合恢复值应该在滑坡稳定性评价中予以考虑。通过对典型红层滑坡滑带土样进行“剪切―保持―剪切”试验,研究处于残余状态下的剪切面在不同法向应力、不同保持时间下的愈合情况,并进行相应的分析与讨论。试验结果表明:(1)残余状态下的土样在保持一定时间后再次剪切出现明显峰值,证明了剪切面自愈合效应存在,但是继续剪切时恢复的强度随位移快速消失;(2)随着保持时间的增长,剪切面的强度恢复值越来越大;(3)剪切面的自愈合相比法向应力更依赖于保持时间。将得到的摩擦系数值运用断层强度恢复经验公式拟合,提出不同法向应力下常数A的取值,可在滑坡安全系数计算中参考。  相似文献   

14.
A theoretical 3D model of a fault region includes a slip-dependent friction, tectonic loading from the sides, and deterministic, continuous time formulation of governing equations. The model reproduces such properties of real faults as earthquake nucleation, earthquake complex rupture and nonregular recurrence. In particular, it is observed that the style of faulting changes from one event to another. Since all parameters related to the constitutive law are fixed during computer simulations, it is concluded that interactions between fault segments are responsible for such behavior. Neither the constitutive law nor fault spatial heterogeneities solely create complexity; rather it is the whole interactive dynamics of the system that determines the character of its evolution. Results are illustrated by time variations of global (i.e., related to the state of the whole fault) functions, such as energy release rate, seismic moment release rate, tectonic stresses, and local characteristics, such as driving and cohesive stresses, slip rates, slip displacements and mutual relations between them.  相似文献   

15.
Displacement analyses along thrust faults of different maturity (or size) reveal maxima and minima, often associated with minor folding of the adjacent beds, between the tip points. The results show that these faults are segmented, and that they formed through the linkage of smaller (previously independent) faults, and (or) by propagation of a single fault affected by the existence of barriers. Points of potential linkage (marked by displacement minima) are fault bends or distinct fault breaks. Fault nucleation (marked by displacement maxima) occurs within the planar segments of a fault; only in one of eight examples is the nucleation point seen to occur at a fault bend.Displacement variations along inferred or extrapolated regional-scale thrust faults show a variety of patterns, most of which involve constant displacement or a monotonic increase or decrease away from the basal décollement. These data are not considered to be as reliable as those from observed thrusts due to the necessary subjectivity involved in the extrapolation process.In general, displacement variation appears to be a reflection of the symmetry of the thrust fault system, such that, for example, a flat-ramp geometry ending in a steep tip will show an asymmetrical displacement function skewed toward the surface, with a nucleation point above the basal décollement.  相似文献   

16.
The Mondy strike-slip fault connects the W-E Tunka and N-S Hovsgol basins on the southern flank of the Baikal rift system. Ground penetrating radar (GPR) surveys in its damage zone provide constraints on thicknesses, dips, and plunges of fault planes, as well as on the amount and sense of vertical slip. Strike-slip faulting in the southern segment of the Mondy fault within the territory of Russia bears a normal slip component of motion along the W-E and NW planes. These motions have produced negative flower structures in shallow crust appearing as grabens upon Pleistocene fluvioglacial terraces. The amount of normal slip estimated from the displacement of reflection events varies over the area and reaches its maximum of 3.4 m near Mondy Village. In the Kharadaban basin link, left-lateral strike slip displaces valleys of ephemeral streams to 22 m, while normal slip detected by GPR reaches 2.2 m; this normal-to-strike slip ratio corresponds to a direction of ~ 6° to the horizon. The angles of dips of faults are in the range 75°-79°; the thicknesses of fault planes marked by low- or high-frequency anomalies in GPR records vary from 2.5 to 17.0 m along strike and decrease with depth within a few meters below the surface, which is common to near-surface coseismic motions. Many ruptures fail to reach the surface but appear rather as sinkholes localized mainly in fault hanging walls. The deformation style in the damage zone of the Mondy fault bears impact of the NW Yaminshin fault lying between its two segments. According to photoelasticity, the stress field changes locally at the intersection of the two faults, under NE compression at 38°, till the inverse orientations of principal compression and extension stresses. This stress pattern leads to a combination of normal and left-lateral strike slip components.  相似文献   

17.
张军龙 《地学前缘》2009,16(3):294-305
2008年5月12日14时28分(北京时间)中国四川省汶川县境内发生里氏80级地震。北川-映秀断裂是汶川Ms8级地震的发震断裂之一,以逆(右行)走滑活动为主,延伸长约220 km,活动强度大于其他两条断裂。主震在北川-映秀地表破裂带局部地点形成清晰的擦痕,它的位置和规模可能是深部破裂滑动量峰值在地表的响应。根据断层擦痕反映的应力场及位移与破裂长度关系等特征,将北川-映秀破裂带分为虹口段、北川段、南坝段。虹口段长度约22~45 km,同震位移量约45 m,σ1呈NWW-NW向,至少经历了三期活动,第三期逆冲活动强度最大,改造前两期逆(右行)走滑活动,它们的形成可能均与本次主震相关;北川段长约90~100 km,同震位移量约35 m,σ1呈NWW向近水平,活动强度弱于虹口第三期;南坝段长约35~50 km,同震位移量约25 m,以NWW向近水平挤压为特征,σ1方位角与中、南段相差约180°,活动强度与南段前两期相近。  相似文献   

18.
A possible mechanism for natural graphite formation   总被引:1,自引:0,他引:1  
By extrapolating the Arrhenius plots for carbonization and experimental thermal progressive graphitization, it is shown that carbonization can go to completion in nature (ΔH ≈ 65 kcal/mole), whereas progressive graphitization is thermodynamically improbable (ΔH ≈ 260 kcal/mole). The mechanism of formation of natural graphite has thus to be determined. Since the geothermal gradient is not strong enough for producing graphite, the existence of shear stresses has to be taken into account. Metamorphism and tectonics create suitable conditions for this transformation. Series of samples of increasing rank from anthracites to metaanthracites, semigraphite and graphite (some of them from the same parent rocks) were compared with carbon, heat-treated experimentally under pressure (5 kbar). Anthracites are microporous materials. Their pores are flattened parallel to the bedding by a pressure effect which is responsible for a long-range statistical preferred orientation. They are anisotropic in texture but only biperiodically crystallized (turbostratic). Metaanthracites differ from anthracites only by an increasing coalescence between adjacent pores. They are thus either mesoporous or even macroporous. They are still turbostratic. Semi-graphites are suddenly obtained as a new phase by an increase in temperature, pressure and shear stresses. They are formed by single macropores, i.e. hollow distorted polyhedral shells. They are partially graphitized. Graphite is suddenly produced by a second phase change also due to an increase in temperature, pressure and shear stresses. The lamellar shape represents the limit of a flattened macropore.  相似文献   

19.
琼东南盆地断裂活动性定量计算及其发育演化模式   总被引:1,自引:0,他引:1  
在地震剖面解释的基础上,运用断层活动速率法和位移-距离法对琼东南盆地主要断裂系统的活动性进行了定量计 算。结果表明,断裂的活动性与盆地的演化阶段相对应,同时可以在同裂陷阶段划分出始新世-早渐新世裂陷幕和晚渐新 世断坳转换幕,这两幕裂陷控制了盆地深部的基本构造格局。单条断层在早渐新世至晚渐新世期间断裂主要活动中心存在 由东向西迁移的过程,盆地断裂系统活动中心在晚渐新世至早中新世也存在由东向西迁移的过程,盆地内规模较大的复合 断裂带具有区段式活动的特征。将盆地内断裂系统发育模式总结为两种:以6号和11号断裂带为代表的简单生长模型,断裂 系统发育演化过程中表现为单一区段断层独立生长的特征,断层简单地由中间向两侧生长,断层位移距离曲线自始至终为 半椭圆型,且最大位移大致位于断层中部;以2号和5号断裂带为代表的生长连通型生长模式,断裂带由多条区段式活动的 断层生长连接形成,其生长发育过程表现为沿断层面纵向上最大滑移量由各个区段的中心向各个区段交汇处迁移,由此各 个区段断端破裂扩展,最终相互连接而形成一条大型断裂带。  相似文献   

20.
Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. normal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates: (1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young's (or shear) modulus of crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal, strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号