首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate-induced drought has exerted obvious impacts on land systems in northern China. Although recent reports by the Intergovernmental Panel on Climate Change (IPCC) have suggested a high possibility of climate-induced drought in northern China, the potential impacts of such drying trends on land systems are still unclear. Land use models are powerful tools for assessing the impacts of future climate change. In this study, we first developed a land use scenario dynamic model (iLUSD) by integrating system dynamics and cellular automata. Then, we designed three drying trend scenarios (reversed drying trend, gradual drying trend, and acceleration of drying trend) for the next 25 years based on the IPCC emission scenarios and considering regional climatic predictions in northern China. Finally, the impacts of drying trend scenarios on the land system were simulated and compared. An accuracy assessment with historic data covering 2000 to 2005 indicated that the developed model is competent and reliable for understanding complex changes in the land use system. The results showed that water resources varied from 441.64 to 330.71 billion m3 among different drying trend scenarios, suggesting that future drying trends will have a significant influence on water resource and socioeconomic development. Under the pressures of climate change, water scarcity, and socioeconomic development, the ecotone (i.e., transition zone between cropping area and nomadic area) in northern China will become increasingly vulnerable and hotspots for land-use change. Urban land and grassland would have the most prominent response to the drying trends. Urban land will expand around major metropolitan areas and the conflict between urban and cultivated land will become more severe. The results also show that previous ecological control measures adopted by the government in these areas will play an important role in rehabilitating the environment. In order to achieve a sustainable development in northern China, issues need to be addressed such as how to arrange land use structure and patterns rationally, and how to adapt to the pressures of climate change and socioeconomic development together.  相似文献   

2.
As one of the largest international scientific pro- grams in geoscience and environmental science, global change studies were initiated in the early 1980s[1,2]. Noticeable achievements have been made in the stud- ies using indicators such as loess, marine sediment, permafrost, vermicular red earth, and even magmatic activity[2―6]. In recent years, the importance of ground- water as a new type of global change indicators has caused wide attention[7]. Stochastic, isotopic and hy- drochemical st…  相似文献   

3.
Oceanic freshwater communities tend to be species poor but rich in endemism due to their physical isolation. The ecology of endemic freshwater species is, however, poorly known. This study assessed allometric relationships, feeding preferences, growth and survival of larvae of the endemic stream insect Limnephilus atlanticus (Trichoptera, Limnephilidae) exposed to four leaf species differing in their physical and chemical characteristics (Ilex perado, Morella faya, Alnus glutinosa and Clethra arborea), in laboratory trials. All regression models used to estimate L. atlanticus dry mass from body and case dimensions and wet mass were significant, but wet mass and body length were the best predictors. Limnephilus atlanticus consumed all the four leaf species offered, but when given a choice, shredders significantly preferred A. glutinosa over the other three leaf species. Relative larval growth rate was significantly higher when L. atlanticus fed on A. glutinosa and I. perado leaves in comparison with the other leaf species. Survival of 95% was found when individuals fed on A. glutinosa leaves while it decreased to 75% when they fed on the other leaf species. Our results suggest that L. atlanticus can be an active shredder and that it exhibits the same basic patterns of food exploitation as its continental counterparts. The lack of an effect of shredders on litter decomposition in Azorean streams revealed by previous studies may thus be due to low densities or to a preference for food resources other than the low quality native litter species.  相似文献   

4.
Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.  相似文献   

5.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In most of Europe, an increase in average annual surface temperature of 0·8 °C is observed, and a further increase is projected. Precipitation tends to increase in northern Europe and decrease in southern Europe, with variable trends in central Europe. The climate scenarios for Germany suggest an increase in precipitation in western Germany and a decrease in eastern Germany, and a shift of precipitation from summer to winter. When investigating the effects of climate change, impacts on water resources are among the main concerns. In this study, the first German‐wide impact assessment of water fluxes dynamics under climate change is presented in a spatially and temporally distributed manner using the state‐of‐the‐art regional climate model, Statistical Regional (STAR) model and the semi‐distributed process‐based eco‐hydrological model, soil and water integrated model (SWIM). All large river basins in Germany (lower Rhine, upper Danube, Elbe, Weser and Ems) are included. A special focus of the study was on data availability, homogeneity of data sets, related uncertainty propagation in the model results and scenario‐related uncertainty. After the model calibration and validation (efficiency from 0·6 to 0·9 in 80% of cases) the water flow components were simulated at the hydrotope level, and the spatial distributions were compared with those in the Hydrological Atlas of Germany. The actual evapotransipration is likely to increase in most parts of Germany, while total runoff generation may decrease in south and east regions. The results for the second scenario period 2051–2060 show that water discharge in all six rivers would be 8–30% lower in summer and autumn compared with the reference period, and the strongest decline is expected for the Saale, Danube and Neckar. Higher winter flow is expected in all of these rivers, and the increase is most significant for the Ems (about 18%). However, the uncertainty of impacts, especially in winter and for high water flows, remains high. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Europe is one of the global hotspots of freshwater amphipod diversity with a number of endemic species, yet many of European freshwater ecosystems are under extreme anthropogenic pressure. Studying the biology and ecology of endemic species may substantially help to assess risk of extinction and define proxies for their conservation. Laurogammarus scutarensis is a Balkan endemic and the only species within the genus Laurogammarus G. Karaman 1984. Its distribution is restricted to temperature-stable, cool waters of the springs, streams and lower sections of a few rivers emptying to the north-western part of the Skadar Lake in Montenegro – an area under heavy anthropogenic pressure in recent years. We examined life history of the species in a limnocrene spring with year-round stable temperature (10 °C ± 0.5) by estimating its population structure over a year, fecundity, reproductive period and relationship between photoperiod and reproduction. These parameters were compared to those of other gammarids, including invasive species, in order to estimate the role of photoperiod in shaping life history of L. scutarensis, and to give insight into the possible conservation needs for that species. Our results show that the species is univoltine and its reproduction continues round the year. However, its intensity is synchronised with seasonal day length changes with the highest share of females breeding in spring and early summer. The population sex structure is strongly female biased in most of the year. Number of eggs laid depends positively on the female body length; however the mean brood size (15.53 eggs) of L. scutarensis is rather low when compared to other species. Also partial fecundity and mean body length at which individuals start to reproduce indicate that its reproductive potential is much lower than that of many other gammarid species, including those colonising many European water bodies in recent years. Concluding, the studied life history traits of L. scutarensis combined with its very narrow distribution range and peculiar thermal requirements reported in the literature provide as with the hint to define the species as vulnerable to threats posed by the habitat degradation and competition with other species. Taking into account the risk of invasion by alien species and progressive habitat loss, we are of the opinion that L. scutarensis should be recognised as an endangered species and that a conservation plan should be implemented to prevent its possible extinction.  相似文献   

8.
We explored distributional patterns and habitat preferences of ostracods in the Burdur province (Turkey). At 121 sites we recorded 35 taxa (22 recent, 13 sub-recent), of which 23 represent new records for the province. According to the Index of Dispersion and d-statistics, the individual species exhibited clumped distributions. Cosmopolitan species dominated (63.64%). A direct effect of regional factors (e.g., elevation) was not observed, while local factors (e.g., water temperature) best explained species distribution among habitats. Based on alpha diversity values, natural habitats (springs, ponds, creeks) were more suitable than artificial habitats (e.g., troughs, dams), suggesting that natural habitats define regional species diversity. Twenty-two of the recorded species had wider ecological ranges than previously reported. Cosmopolitan species appeared to suppress non-cosmopolitan species due to their wider ecological range.  相似文献   

9.
The study evaluates relationships between the North Atlantic Oscillation (NAO) index and winter temperatures (including indices of extremes) over Europe in an ensemble of transient simulations of current global climate models (GCMs). We focus on identification of areas in which the NAO index is linked to winter temperatures and temperature extremes in simulations of the recent climate (1961–2000), and evaluate how these relationships change in climate change scenarios for the late 21st century (2071–2100). Most GCMs are able to reproduce main features of the observed links. The NAO index is more important for cold than warm extremes, which is also reproduced by the GCMs. However, all GCMs underestimate the magnitude of the NAO influence on cold extremes when averaged over northern and western Europe. For future scenarios, the links between the NAO and temperatures are mostly analogous to those in the recent climate, except for one GCM (CM3) in which the influence of the NAO on temperature almost disappears over whole Europe. This suggests that future scenarios from this particular GCM should be evaluated with caution. The NAO index is found to represent a useful covariate that explains an important fraction of variability of cold extremes in winter, and its incorporation into extreme value models for daily temperatures (and their possible changes under climate change) may improve performance of these models and reliability of estimates of extremes and their uncertainty.  相似文献   

10.
The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.  相似文献   

11.
Terrestrial ecosystems are both a carbon source and sink, therefore play an important role in the global carbon cycle that act as a link of interactions between human activities and climate changes[1,2]. Climate change impacts ecosystem carbon cycle through af- fecting biological processes, e.g. plant photosynthesis, respiration, and soil carbon decomposition. Land-use change directly modifies the distribution and structure of terrestrial ecosystems and hence the carbon storage and fluxes. Usi…  相似文献   

12.
Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty-one sampled springs emerge at faults (13 emerge at low-angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low-angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low-angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System - DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.  相似文献   

13.
滇池生态系统退化成因、格局特征与分区分步恢复策略   总被引:5,自引:3,他引:2  
选取生态系统中重要的组成成份:浮游植物、底栖动物、水生植物的历史演变和现在分布状况数据,结合水质变化情况,揭示了滇池生态系统退化原因:在外因上,污染物持续输入以及围湖造田、直立堤岸和水量交换缓慢等外力干扰加剧系统组分失衡是直接原因;在内因上,由于滇池所处的地理位置、气候等原因,蓝藻生物量对营养盐增加的响应远高于其他湖泊(太湖、巢湖),草型向藻型湖泊的转换进程更快;与太湖和东湖的生态系统比较,高原湖泊滇池生态系统相对脆弱,如物种的同域分化、窄生态位,导致系统的稳定性差、自我修复能力弱.通过对滇池生态格局特征、湖岸带结构的分析,将滇池划分为5个生态区:草海重污染区、藻类聚集区、沉水植被残存区、近岸带受损区和水生植被受损区,并提出"五区三步,南北并进,重点突破,治理与修复相结合"的滇池生态系统分区分步治理的新策略和"南部优先恢复;北部控藻治污;西部自然保护;东部外围突破"的总体方案.  相似文献   

14.
Hans Brix   《Limnologica》1999,29(1):5-10
Reeds (Phragmites australis (Cav.) Trin. ex Steudel) are dying back at a fast rate in sizeable areas of Europe, with significant impacts on important wetland functions (biodiversity, stability of river and lake margins, water quality) and local economy. EUREED is a European strategic fundamental research initiative that aims at analyzing the mechanisms which control the growth dynamics and stability of reed-dominated ecosystems, at modelling and predicting how the ecosystem is disturbed by human activities and climate change, and at developing remedial management options. Expected achievements include (i) assessment of the functional role of reed-dominated ecotones as nutrient accumulators and transformers and as sources for atmospheric greenhouse gases, (ii) an ecosystem model capable of predicting future changes in ecosystem functioning in relation to climatic conditions, trophic status and water table management, (iii) assessment of genetic diversity of reed populations and its relation to die-back, and (iv) development of management tools, including preventative and restorative measures in relation to die-back. The project is carried out by research groups with complimentary skills and expertise from nine European countries. A reference study site is selected in each country as the basis for the field studies. The reference sites cover boreal-mediterranean and oceanic-continental climatic gradients, and the observational and experimental studies at these sites will permit interpolation between sites and extrapolation of results to the European scale.  相似文献   

15.
《国际泥沙研究》2021,36(6):756-769
Coastal lagoons are particularly vulnerable to climate change, in particular, Sea Level Rise (SLR) due to their shallowness. Lake Burullus provides a variety of socio-economic services as the second largest coastal lagoon in Egypt. Recently, it has experienced significant ecological deterioration. Thus, its ecosystem is fragile in the face of anthropogenic induced changes. The main objective of the current study is to investigate the climate change impacts on characteristics of Lake Burullus. A depth averaged hydro-ecological modeling system, MIKE21, was applied to develop an eco - hydrodynamic model for the lake. The developed model was calibrated and verified for two successive years: July 2011–June 2012 and July 2012–June 2013. The model simulations exhibited good agreement with the measurements during the calibration and verification processes. Six different Regional Climate Models (RCMs) were compared, using six different statistical metrics, to determine the most accurate one for the study area. The required meteorological input, including surface air temperature, precipitation, and evaporation were derived from the selected RCM. The meteorological input was extracted for two different years in the 21 st century considering one Representative Concentration Pathways (RCPs) scenario, based on the Intergovernmental Panel on Climate Change (IPCC) 5th Report. Regional SLR projections for the Mediterranean Sea for the selected RCP scenario and the two studied years were obtained. These future climate change estimates were used to modify the validated model of the lake. A sensitivity analysis was applied to assess effect of future climatic conditions and SLR, separately. The results revealed that the lake water depths will increase and it will be warmer and more saline. Significant spatial variability of the studied parameters under climate change forcing is expected. Consequently, climate change is going to restrict the lake's ability to preserve the present-day species. An urgent management plan involving adaptation works, should be implemented to reduce such potential species losses in Egyptian lagoons.  相似文献   

16.
Springs are stable environments with constant abiotic factors and therefore of use in variety of ecological experiments. We investigated the influence of canopy coverage on abundance, diversity, phenology and feeding guilds among Diptera assemblages at two rheocrene karst springs located near each other. The springs differed by canopy coverage while physicochemical characteristics of the water were similar. We set six emergence traps for one year at each spring covering all available microhabitats proportionally. We hypothesized that canopy coverage will have a strong effect on assemblage composition of Diptera as well as on diversity, abundance, phenology and feeding guilds composition between sites and that it will have a stronger effect than microhabitat characteristics. Similarity of species composition among springs was only 37.5%, with 23 common species/taxa out of 74 species/taxa. Abundance of Diptera was 8.5× higher at the open canopy spring, while diversity and number of species/taxa was higher at closed canopy spring. Emergence started earlier at open canopy site and was prolonged even in winter months. The majority of species were detritus feeders followed by collectors and there was no substantial difference among sites. We conclude that at springs with similar water characteristics, canopy coverage is the main driver of Diptera assemblage structure, with water velocity as a complementary factor. Substrate and other physicochemical factors seem less important.  相似文献   

17.
The Earth's water resources are endangered by inconsiderate use, pollution and lack of conservation measures. Temporal monitoring is necessary for the conservation and usage planning of water resources and to make informed decisions. Seyfe Lake and its environs in Turkey is one of the most important water basins in the world, because it is a node on bird migration paths between Europe, Asia and Africa. For this reason, the International Council of Bird Preservation (ICBP) has registered 27 of the bird species living at Seyfe Lake on the conservation list. In this work, the temporal changes in the water surface area of Seyfe Lake and its environs, which are important for ecological, historical and tourism reasons, are investigated. The change of water surface in the lake is examined over a 26 year period using satellite images taken between 1975 and 2001. Landsat images from years 1975, 1987 and 2001 are used. The change is tracked from the images using an unsupervised classification method. A decrease of slightly more than 33% was observed in the water surface area this 26 year period. The temporal change indicated by the images was compared with the related meteorological data between 1975 and 2001. Over this time period, climate conditions (rainfall, temperature and evaporation) in the study area have been changed by approximately 21%. These changes could have affected the Lake surface area, but so also could external human interference around the Lake. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in northeastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future streamflows. The largest reduction (34%) in mean streamflows (for 2076–2100) is expected in the headwaters of the two wettest catchments, while lower decreases (25% of mean value for 2076–2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in streamflow, of 50% and 30%, respectively. Thus, ecological flows in the study area might be noticeably influenced by climate change, especially in the headwaters of the wet catchments.  相似文献   

19.
珠江干流梯级开发对鱼类的影响与减缓对策   总被引:1,自引:0,他引:1  
2013年6—7月对珠江龙滩库尾至长洲坝下江段干支流鱼类进行了调查,共采集到鱼类6418尾,隶属于10目23科82属122种.分析了渔获物的种类组成与分布、生态类型、珍稀濒危特有鱼类采样情况、各江段群落相似度和鱼类多样性等,并与该区域鱼类历史记录进行了对比分析.总体来看,珠江干流梯级开发后,由于大坝阻隔、水文情势改变等,鱼类资源发生了较大变化,河海洄游性鱼类和河口鱼类受大坝阻隔影响分布范围变窄;珍稀濒危特有鱼类由于生境破坏,种群规模变小,濒危程度加剧;库中江段流水性鱼类种类数和资源量显著下降,静缓流鱼类成为优势种;外来鱼类种类多、分布广.对导致珠江干流鱼类资源衰退的其他原因进行了分析,主要包括过度捕捞、生境破坏、水污染和外来鱼类入侵等.针对珠江干流梯级开发及鱼类资源现状,提出了栖息地保护、河流连通性恢复、鱼类增殖放流站建设、生态调度、渔政管理和生态补偿等措施建议.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号