首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Auroral, magnetic variation and pulsation data from the dense network in the nearmidnight portion of the auroral zone are used together with the measurements of suprathermal particles and electromagnetic fields by the IMP-8 and ISEE-1 spacecraft within the plasma sheet to study the characteristics of activity during two magnetically quiet periods on 3 March 1976 and 23 March 1979. Contrary to existing beliefs, we found clear signatures of numerous (5–10 events per hour) transient events, characterized by plasma flows, energetic particle bursts and EB field variations. A close association of these events in the plasma sheet with the local auroral flares (LAFs) in the conjugate sector of the auroral zone is established for many events. We conclude that LAF (local auroral arc activation with associated Pi pulsations but extremely weak magnetic bays) have the same plasma sheet manifestations (apparently, the same physics) as the individual substorm intensifications during strong substorm expansion events, which differ from the studied quiet periods mainly by the strength and number of these intensifications. These transient phenomena seem to play an important role in the energetics of the quiet time magnetotail.  相似文献   

2.
All-sky camera observations from two stations in the inner (northern) polar cap and an auroral zone station are combined with photometer records from the polar cap station Nord in a study of the brilliant auroral display following the ssc of the storm of 7 November 1970. This display is the large, poleward expanding bulge of a substorm triggered by the ssc. It is composed of brilliant discrete forms embedded in low-intensity diffuse electron and proton aurora. The poleward edge of the diffuse electron aurora is 5° north of the discrete auroras and 3° north of the proton aurora. The intensity of the discrete aurora varies as the strength of the auroral electrojet as shown by magnetograms from auroral zone stations. Succeeding the retreating display a subvisible low-energy electron precipitation, which may be identified as the polar squall (Winningham and Heikkila, 1974) is observed over the polar cap during the main phase of the storm.In the early morning sector already existing diffuse auroras broaden towards the equator from the time of the ssc and at least during the following half hour.Ssc-triggered displays have been found (Feldstein, 1959) to withdraw from the inner polar cap as the initial (positive H) phase of the storm ends. A comparison of the records from seven low-latitude stations shows that during this particular storm the positive phase appears to be composed by two overlapping disturbances, i.e. the proper initial phase, which is generally thought to be due to compression of the inner magnetosphere and a series of positive bays accompanying the negative bays in auroral latitudes. These positive bays are observable over a great range of longitudes with a maximum of amplitude near midnight. As judged from the dayside magnetograms the initial (compression) phase ends at an early stage of the substorm. The observed coincidence between the withdrawal of the display and the cessation of the positive H phase of the storm is a consequence of the fact that the second component—the positive bays—and the auroral display over the polar cap are both signatures of the substorm activity.  相似文献   

3.
A comparison of the variations in the count of electrons E > 36 keV on the satellite Vela 4A, and in the Macquarie Island magnetometer H trace, shows for a time lag of 22-8 min a correlation, r = 0.95, over a 90 min period of the recovery phase of a magnetospheric substorm on 17 August 1968. All-sky camera data suggest that during the correlation period the auroral electrojet showed very little latitudinal movement. Each peak in electron count relates to a current surge in the electrojet as shown by a deepening of the negative bay at Macquarie Island.Using the Fairfield (1968) model of the location of auroral shells in the solar magnetic equatorial plane, and the known location of the satellite, an estimate of the velocity of tail to Earth plasma convection in the plasma sheet of about 0·33 Re/min is obtained for the recovery phase.The relationship is discussed between plasma sheet thinning and subsequent broadening, and the extension of the magnetic field lines into the tail region and their subsequent return. This discussion makes use of the estimated time lags between electron count at the satellite and the time of arrival of auroral particles at the antisolar meridian.From a somewhat speculative explanation, but one largely supported from the literature, of the magnetospheric processes involved in this auroral substorm, a plasma velocity estimate of 0·42 Re/min for the initial phase of the substorm is obtained. These velocities are of the same order as the 0·5 Re/min obtained by Lezniak and Winkler (1970) at 6·6 Re.  相似文献   

4.
Characteristics of the supersonic auroral arcs within the 0905 UT 2 April 1973 substorm were determined using data from (1) all-sky cameras; (2), surface magnetometers, (3) multispectral scanning photometers, (4) 30MHz riometers, (5) Chatanika incoherent-scatter radar, (6) Homer auroral radar, and (7) infrasonic microphone arrays at College and Stevens Village in Alaska. These data were analyzed to determine the properties of an auroral electrojet arc that generates auroral infrasonic waves (AIW).

An arc that was show to be the source of an AIW was found to have the following characteristics: (1) a velocity of 500 m/sec traveling from an azimuth of 350°; (2) an intensity in 4278 A of 26 Kr, (3) a maximum electron density of 2.8 × 106 el/cm6 at 100km height, (4) an equivalent westward line current of 2.8 × 106 A, (5) orientation of ΔH parallel to the AIW direction of travel and perpendicular to the arc's long axis, (6) a characteristic energy of the primary auroral electron spectrum of 3.0keV, and (7) an energy deposition rate for the auroral pdarticles of 100 erg/cm2 sec.  相似文献   


5.
An investigation has been made of the relation between auroral emission at λ5577 Å and the cosmic noise absorption using a new technique. A photometer and the antenna of a riometer were mounted on a 60 m long rotating antenna boom which had a speed of 1 rev per 3 min. The instruments were directed at an elevation angle of 45°. From the analysis of several break-ups of the aurora it has been found that during a period of 15–20 min in the middle of a break-up there may be an increase of the absorption by a factor 2 to 4 which does not correspond to a similar increase of the auroral emission. These changes in the emission-absorption ratio has been interpreted as peaks in the energy spectrum of the incoming particles. The structures of auroral emission and auroral absorption are sometimes very similar over periods of hours and the appearance of the structure is usually in the form of an east-west oriented arc. The cross correlation coefficient may be as high as 0·9 during these events over long periods of time. However, a number of exceptional cases have appeared where little structure was found in the riometer record while the photometer showed structure and vice versa.  相似文献   

6.
It has been proposed that magnetospheric substorms and solar flares are a result of the same mechanism. In our view this mechanism is connected with the escape, or attempted escape, of energized plasma from a region of closed magnetic field lines bounded by a magnetic bottle. In the case of the Earth, it must be plasma that is able to maintain a discrete auroral arc, and we propose that the cross-tail current connected to the arc is filamentary in nature to provide the field-aligned current sheet above the arc. A localized meander of such an intense current filament could be caused by a tearing instability in the neutral sheet. Such a meander will cause an inductive electric field opposing the current change everywhere. In trying to reduce the component of the induction electric field parallel to the magnetic field lines, the plasma must enhance the transverse or cross-tail component; this action leads to eruptive behavior, in agreement with tearing theories. This enhanced induction electric field will cause a discharge along the magnetic neutral line at the apex of the magnetic arches, constituting an impulsive acceleration of all charged particles originally near the neutral line. The products of this phase then undergo betatron acceleration for a second phase. This discharge eventually reduces the electric field along the neutral line, and thereafter the enclosed magnetic flux through the neutral line remains nearly constant. The result is a plasmoid that has definite identity; its buoyancy leads to its escape. The auroral breakup (and solar flare) is the complex plasma response to the changing electromagnetic field.  相似文献   

7.
This paper presents a brief summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the ‘foot’ of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward travelling surge, poleward expansive motion and drifting patches. Some of the important findings are (i) in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward travelling surges (even when the satellite is embedded in the plasma sheet.) (ii) In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. (iii) Specific features of morning sector auroras (for example, drifting patches) are difficult to correlate with specific particle features (gross features, but not specific).Comparing these results with particle data from low-latitude polar orbiting satellites, it is concluded that the plasma sheet near the earthward edge (consisting of plasmas injected during earlier substorms) is little affected during substorms.  相似文献   

8.
9.
In the midday sector, the hard electron precipitation and the associated patchy aurora at geomagnetic latitude ~65° are the only auroral features (? 20 keV) located equatorward of the dayside auroral oval during intense and moderately disturbed geomagnetic conditions. We identify the patchy luminosity in the midday and late morning sectors as the active mantle aurora. The mantle aurora was found by Sanford (1964) using the IGY-IGC auroral patrol spectrographs and which was thought to be non-visual. The precipitating electrons reside mostly at energies greater than several keV with an energy flux of ? 0.1 erg cm?2 s?1 sr?1 during geomagnetic active periods. This hard precipitation occurs in a region which is asymmetric in L.T. with respect to the noon meridian. The region extends from the morning sector to only early afternoon (13–14 M.L.T.) along the geomagnetic latitude circle of about 65–70°. The model calculation indicates that the mantle aurora is produced by the precipitation of the energetic electrons which drift azimuthally from the plasma sheet at the midnight sector to the dayside magnetopause during magnetospheric substorms.  相似文献   

10.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


11.
Atmospheric expansion through Joule heating by horizontal electric fields   总被引:1,自引:0,他引:1  
Incoherent scatter measurements made along a magnetic field line into aurora during a period of high electric field in the recovery phase of a substorm show (1) considerably increased electron densities well above the normal F-region maximum, and (2) field-aligned plasma drifts that increase with altitude. A model invoking atmospheric expansion through Joule heating by the horizontal electric field driving the auroral electrojet is used to explain the observations. From this study it is concluded that during magnetically disturbed periods (1) Joule heating by the auroral electrojet raises the neutral temperature and density in the auroral zone ionosphere at F-region heights, (2) ionization formed by the aurora is transported upward by the expanding atmosphere, at times producing an appreciable increase in lower exospheric plasma densities on the field lines containing the aurora, and (3) combined satellite, radar, and optical observations during periods of aurora and high electric field could provide measured F-region collision frequencies.  相似文献   

12.
Neutral density data were obtained near 400km (1600 LT) from a microphone density gauge on OGO-6 from 0°G to 40°N magnetic latitude for 25 September–3 October 1969. Several geomagnetic storms occurred during this period (ap varied from 0 to 207). Least-squares fits were made to data points on density-ap and density-Dst scatter diagrams, where the density values selected were delayed in time behind ap and Dst. An equation representing the least-squares fit was computed for each delay time. The equation of best fit (and the corresponding time delay between the density and the magnetic index which resulted in this best fit) was found by choosing the equation that gave the minimum standard error. For example, the best fit at 10°N geomagnetic latitude occurred for ap at t — 3 hr, where t is the time of the density values. The implications of the time differences associated with the best fits at various latitudes and longitudes are discussed with regard to the time delays involved in geomagnetic heating of the neutral upper atmosphere.

A low-latitude density bulge has been found between 0°N and 40°N whose magnitude varies with ap. DeVries (1972b) has independently discovered this daytime phenomenon. If the bulge is a semi-permanent feature near the equinoxes because of the enhanced geomagnetic activity, this may help explain the semi-annual effect in density, which was uncovered first in the drag data from low inclination satellites.  相似文献   


13.
Ionospheric and plasma sheet particle densities, fluxes and bulk velocities along an auroral magnetic field line have been calculated for an ion-exosphere model. It is shown that such a collisionless model accounts for many features observed above the auroral regions. Except for very strong plasma sheet electron precipitation, no large potential difference is needed along the magnetic field lines to account for the usual proton and electron fluxes, their pitch angle distributions, and auroral field aligned currents.  相似文献   

14.
Changes of the geometry of the open field line region (namely, the polar cap) caused by the passage of a tangential IMF discontinuity are simulated using the model constructed by Akasofu and Roederer (1983). A singly-bounded open field line region tends to split into two, forming a narrow closed field line region and thus allowing the formations of a plasma sheet and of an auroral arc across the highest latitude region of the Earth. The three-dimensional geometry of some of the closed field lines in the narrow closed region is examined. In this connection, an interesting observation of the formation of an auroral arc over Thule, Greenland, is reported.  相似文献   

15.
Magnetic pulsation Pi2 and substorm onset   总被引:1,自引:0,他引:1  
Coincidence between the onset of sudden brightening of the auroral arc in the auroral oval and the onset of Pi2 magnetic pulsation in low latitudes is examined based on the auroral data obtained at a chain of stations in Alaska and the Pi2 data obtained at the low-latitude station Onagawa. The result shows that the low-latitude Pi2 occurs almost simultaneously with the sudden brightening of the auroral arc, i.e. the onset of an auroral substorm (T = 0). It is concluded that the onset of substorms can be identified quite well with the onset of the low-latitude Pi2.  相似文献   

16.
Plasma data from the Apollo XIV Charged Particle Lunar Environment Experiment (CPLEE) are presented to show that contrary to previously published analyses the plasma sheet does not extend to the lunar orbit with a thickness of 8 RH. Two electron spectral types are observed: (1) low energy photoelectrons with no statistically significant medium and high energy fluxes, and (2) double peaked medium and high energy electrons. The second type is observed either coincident with auroral substorms or at the center of the tail during quiet times. These spectra are one to several orders of magnitude less intense than plasma sheet spectra measured near 20 RE.  相似文献   

17.
Helium in the Earth's thermosphere traces the dynamical systems that redistribute energy and mass. Measurements of the global helium distribution in the thermosphere, using Atmosphere Explorer satellite C. (AE-C), show a gradual seasonal change in the number density of helium for all latitudes. The enhancement in helium over the winter pole (the helium bulge) changes in magnitude slowly as seasons progress. The bulge builds and recedes following the progression of winter North to South and back again. This progression of the winter helium enhancement is presented in this paper using latitudinal profiles of helium number density for each month during the year. The absolute magnitude of the winter helium enhancement in the auroral regions is affected by auroral heating at low altitudes. The reduction in the winter helium bulge at low altitudes shown in AE-C data can be traced to this localized heating. The gradual variation in helium concentration measured at many latitudes for all seasons of the year implies that global thermospheric wind systems change gradually with the seasons.  相似文献   

18.
It is suggested that the ionosphere plays an active role in many substorm processes by generating field-aligned currents associated with the Hall current. Various substorm phenomena, such as the cross-tail current interruption, the asymmetric main phase field and the poleward expanding auroral bulge, may be closely related to the closure of the Hall current circuits in the magnetosphere.  相似文献   

19.
20.
Explorer 34 (Imp 4) 2.56 s magnetic data during 131 traversals of the tail current sheet are presented along with simultaneous 2.5 min auroral electrojet indices AE and AL. The normal magnetic field,B , satellite crossing times and positions are tabulated for these 131 crossings.B is defined in the center of the sheet: it is the vector magnetic field at the time of field minimum during the crossing (B x component changes sign). It is remarkable that the only normal components too large in magnitude to be classified as fine structure occur near the time of onset of an AE event. Cases are discussed where the normal component, defined near the plasma sheet edges, has the opposite sign compared to the normal component defined at the sheet center. For quiet times, the current sheet may be only about 1000 km thick within a 3R e (Earth-radii) plasma sheet, and may carry some 10–15% of the total tail current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号