首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
With the help of empirical data concerning the latitudinal distribution of galactic gamma rays the contribution of inverse Compton scattered gamma rays is calculated using various models concerning the distribution of high energy cosmic ray electrons perpendicular to the galactic plane. It is shown that gamma ray astronomy from regions with vanishing stellar and interstellar matter densities at energies greater than 100 MeV provides instructive information on the cosmic ray electron density. We find evidence for the existence of a broad galactic electron disk with a total thickness of at least 6.4 kpc. The uncertainties of the cosmic ray electron spectrum measurements above 100 GeV imply an additional uncertainty in the inverse Compton source function of at least a factor 6.  相似文献   

2.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

3.
本文利用几种典型的银河系宇宙线分布律和星际氢分布律计算单漏模式和双漏模式中的弥散宇宙γ射线谱。结果表明,几种典型的宇宙线分布中,李惕碚的分布律优于其他作者的分布律;星际氢分子数量的取值应当比Gordon值除以1.7更小;只要适当地选择宇宙线分布和氢分布就可得到与观测γ谱相近的理论谱,宇宙线分布和氢分布均可在一定范围里选取。  相似文献   

4.
It is believed that the observed diffuse gamma-ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma-ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma-ray spectra.  相似文献   

5.
The spectrum of galactic primary cosmic rays at relativistic monenta is calculated. The primaries are assumed to be accelerated continuously from the thermal galactic background medium by first- and second-order Fermi acceleration. We show that the observed spectrum is readily obtained from the transport equation conventionally invoked to discuss propagation and loss of cosmic rays in our Galaxy from a distribution of sources. We have previously (Lerche and Schlickeiser, 1985) shown that the observed secondary to primary ratio is satisfactorily explained by a similar use of the transport equation, allowing for secondary production from the primaries. Accordingly, when the results of this paper are added to those concerning the secondary/primary ratio behaviour, it would seem that continuous Fermi acceleration accounts, in a quantitative fashion, for the spectral behaviours observed at Earth.  相似文献   

6.
The effect of high-speed recurrent solar wind streams from coronal holes on the galactic cosmic rays intensity is investigated. The distribution of galactic cosmic rays for different solar cycles is considered based on the data of the world network of neutron monitors. Within the inhomogeneous model, which includes a homogeneous background and regions of high-speed streams (HSS’s), the transport equation has been solved and the effect of HSS’s on the spatial distribution of galactic cosmic rays is estimated. It is shown that theoretical calculations are agreed with the experimental results obtained for 2000–2014 under different assumptions about the mean free path of cosmic rays in the corresponding period of HSS’s.  相似文献   

7.
8.
We consider effects on an (ultra)relativistic jet and its ambient medium caused by high-energy cosmic rays accelerated at the jet side boundary. As illustrated by simple models, during the acceleration process a flat cosmic ray distribution can be created, with gyro-radii for the highest particle energies reaching scales comparable to the jet radius or energy density comparable to the pressure of the ambient medium . In the case of efficient radiative losses, a high-energy bump in the spectrum can dominate the cosmic ray pressure. In extreme cases, the cosmic rays are able to push the ambient medium off, providing a 'cosmic ray cocoon' separating the jet from the surrounding medium. The considered cosmic rays provide an additional jet braking force and lead to a number of consequences for the jet structure and its radiative output. In particular, the dynamic and acceleration time-scales involved are in the range observed in variable active galactic nuclei.  相似文献   

9.
The origin and behavior of cosmic rays in the Galaxy depends crucially upon whether the galactic magnetic field has a closed topology, as does the field of Earth, or whether a major fraction of the lines of force connect into extragalactic space. If the latter, then cosmic rays could be of extragalactic origin, or they could be of galactic origin, detained in the Galaxy by the scattering offered by hydromagnetic waves, etc. If, on the other hand, the field is largely closed, then cosmic rays cannot be of extragalactic origin (at least below 1016 eV). They must be of galactic origin and escape because their collective pressure inflates the galactic field and they push their way out.This paper examines the structure of a galactic field that opens initially into intergalactic space and, with the inclusion of turbulent diffusion, finds no possibility for maintaining a significant magnetic connection with an extragalactic field. Unless some mechanism can be found, we are forced to the conclusion that the field is closed, that cosmic rays are of galactic origin, and that cosmic rays escape from the Galaxy only by pushing their way out.  相似文献   

10.
弥散宇宙γ射线产生于初级宇宙线的传播过程,本文利用宇宙线传播的“双漏模式”得出与实验观测谱接近的银河系弥散宇宙γ射线谱。  相似文献   

11.
The case is made for most cosmic rays having come from galactic sources. ‘Structure’, i.e. a lack of smoothness in the energy spectrum, is apparent, strengthening the view that most cosmic rays come from discrete sources, supernova remnants being most likely.  相似文献   

12.
13.
The process of heliospheric modulation of intensity of galactic cosmic rays is investigated by solving the transport equation. The spatial-energetic distribution of cosmic rays in the present epoch and in the past is analyzed. It is demonstrated that the particle density and the energy density of cosmic rays in the Solar System in the distant past were much lower than the corresponding current values. The cosmic ray intensity modulation in the early heliosphere was especially strong in the case of low-energy particles.  相似文献   

14.
We used the solution of the propagation equation of galactic cosmic rays given in /1/ to analyse the HEAO-3 C-2 data and determined their escape path length distribution and residence time. We also determined the age of the cosmic rays from the decay of Mn-54  相似文献   

15.
After observation of hundreds of Thunderstorm Ground Enhancements (TGEs) we measure energy spectra of particles originated in clouds and directed towards Earth. We use these “beams” for calibration of cosmic ray detectors located beneath the clouds at an altitude of 3200 m at Mount Aragats in Armenia. The calibrations of particle detectors with fluxes of TGE gamma rays are in good agreement with simulation results and allow estimation of the energy thresholds and efficiencies of numerous particle detectors used for studying galactic and solar cosmic rays.  相似文献   

16.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

17.
The hydrostatic equilibrium of the gas field system is studied in the halo. Cosmic-ray distribution is considered independently from the magnetic field on the basis of the diffusion model of the propagation of cosmic rays. We show that the cosmic rays extend in the halo to distances of a few kiloparsecs. The magnetic field decreases slowly with height above the galactic plane.  相似文献   

18.
We have obtained a simple representation to the observed invariant cross-section for the production of neutral pions in proton-proton collisions. Making use of this representation, we have calculated the differential and integral production spectra of gamma rays in the Galaxy from interactions of cosmic ray nuclei with interstellar gas. It is shown that the uncertainties in deducing interstellar proton spectrum by demodulating the observed spectrum do not affect very much the gamma ray spectrum. We have also determined the gamma ray production spectrum through bremsstrahlung process for a typical interstellar electron spectrum derived from the radio spectrum in the Galaxy. From these, the total gamma ray production spectrum resulting from the interaction of cosmic rays with interstellar matter is compared with the observed gamma ray spectrum in the Galaxy and some inferences have been obtained. We also point out the possible uncertainty in the present calculation and suggest the improvements needed.  相似文献   

19.
The propagation of radioactive nuclei of cosmic rays in a flat diffusion galactic model (sources and the main gaseous mass are concentrated in the galactic disc) is considered. The corresponding results are not reducible to the results of a simple homogeneous model. It is shown that the recent data on the Be10 nuclei abundance in cosmic rays do not contradict the occurrence of a large cosmic ray halo.  相似文献   

20.
The general solution for the distribution of ages for primary galactic cosmic rays is given for a class of steady-state, bounded models of cosmic-ray diffusion in the Galaxy. Both one-and threedimensional models are considered, with point sources and distributed sources. In all models, the age distribution, is approximately exponential for ages longer than the average age, although for shorter ages the distribution depends on the details of the model. The leaky-box model, with an exponential age distribution, is thus a good approximation to most diffusive models. It is shown that one-dimensional (disk) models are consistent with both age and anisotropy data for galactic cosmic rays regardless of whether production takes place near the galactic center or throughout the disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号