首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-dimensional (2-D) mesoscale numerical model is applied to simulate the January 28 cold-air outbreak over the Gulf Stream region during the Intensive Observation Period-2 (IOP-2) of the 1986 Genesis of Atlantic Lows Experiment (GALE). The model utilizes a turbulence closure which involves the turbulent kinetic energy (TKE) and dissipation () equations and combines the level 2.5 formulations of Mellor and Yamada (1982) for better determination of the eddy Prandtl number.The modeled marine boundary layer (MBL) is in good agreement with the observations (Wayland and Raman, 1989) showing a low-level jet west of the Gulf Stream warm core and a constrained boundary layer due to the middle-level (2–4.5 km) stable layer. The MBL-induced single cloud and rain band first appears east of the Gulf Stream boundary, and then moves offshore at the speed of the circulation front. The front, however, moves slightly slower than the ambient flow. Removal of the tropopause does not influence the low-level circulation and the movement of the front. The speed of the front is slightly larger in the baroclinic downshear flow than in the barotropic flow. The results also indicate that the observed high cloud streets propagating downwind of the Gulf Stream may be related to upper-level baroclinic lee waves triggered by an elevated density mountain. The density mountain waves, however, become evanescent as the baroclinity (which gives a larger Scorer parameter) is removed.The modeled 2-D circulation systems are found to be sensitive to differing eddy Prandtl numbers, in contrast to the 1-D model results presented in Part I. Sensitivities become increasingly important as the clouds begin to interact with the MBL. A constant eddy Prandtl number of unity produces a more slantwise convection compared to that by the level 2.5 case. Cloud development is stronger in slantwise convection than in upright convection. The fastest development of clouds can be explained in terms of the conditional symmetric instability (CSI), which begins as the MBL baroclinity becomes sufficiently large.  相似文献   

2.
Early studies of mountain waves reported various results that have rarely been investigated since. These include: large-amplitude mountain waves above an unstable boundary layer much higher than the mountains; a repeated downwind drift and upwind jump of mountain waves; and larger vertical wind magnitude near sunrise and/or sunset. These are investigated using over 3,000 radiosondes and meso-strato-troposphere (MST) radar. Superadiabatic temperature gradients are found beneath mountain waves, explainable by convection which appears to raise the mountain-wave launching height. Movement of mountain-wave patterns is studied by a new method using height–time vertical wind data. A swaying motion of mountain waves, with period of a few minutes, appears to be equally upwind and downwind, rather than asymmetric at the heights measurable. Also, vertical wind shows no change in mean, variance or extreme values near sunrise and sunset, despite the expected diurnal changes of boundary-layer structure. An explanation for differences between MST radar and other measurements and models of mountain waves is suggested in terms of more than one variety of mountain wave. Type 1 has stable air near the ground; type 2 is above a convective/turbulent boundary layer of significant height as compared to the mountains.  相似文献   

3.
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation without moisture is analytically derived without assuming any additional relationships or specific initial conditions. It is shown that to expand the solution to include moisture, only minor approximations have to be made. Second, for relatively large boundary-layer heights, the implicit representation is simplified to an explicit function. Third, a hybrid expression is proposed as a reasonable representation for the boundary-layer height evolution during the entire day. Subsequently, the analysis is extended to present the evolution of any boundary-layer averaged scalar, either inert or under idealized chemistry, as an analytical function of time and boundary-layer height. Finally, the analytical solutions are evaluated. This evaluation includes a sensitivity analysis of the boundary-layer height for the entrainment ratio, the free tropospheric lapse rate of the potential temperature, the time-integrated surface flux and the initial boundary-layer height and potential temperature jump.  相似文献   

4.
The South China Sea summer monsoon is an important system affecting the weather and climate in China;its outbreak and evolution vary from year to year.Using the reanalysis data from the U.S.National Centers for Environmental Prediction (NCEP) and outgoing longwave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA),USA,we analyze the circulation pattern,precipitation distribution,convection,temperature,and humidity around the monsoon outbreaks in 2004 and 2008.Results show that the monsoon had a late onset in 2004 (May 19) but an early outbreak in 2008 (May 4).Prior to the monsoon outbreak in 2008,cross-equatorial flows in Somalia were weaker than in 2004,subtropical precipitation did not arrive in southern China as it did in 2004,and the strongest convection was located more southward than in 2004.The results also indicate that accumulated rainfall in the Indochina Peninsula was about 61% of that in 2004 during a period of 25 days leading up to the monsoon outbreak,causing differences in land surface processes and then different activity levels for the summer monsoon.Post-onset warm and humid conditions in 2008 (2004) maintained through the end of October (mid-September),while the summer monsoon lasted longer in 2008 than in 2004.  相似文献   

5.
Summary Using observational analysis and mesoscale numerical simulations we investigate the subtropical jet (STJ) and its effects on the lower environment (associated mass and momentum adjustments, development of a low-level jet (LLJ), and low-level PV) 48 to 6 hours before the Raleight tornado outbreak (1988). We also compare the environment to a synoptically similar event in which severe weather forecasted but did not develop over central North Carolina. In the severe weather case a self-maintaining. low-level circulation originated over Mexico, propagated across the Gulf Coast and moved over the Piedmont at the time of the tornado. It is characterized by a surface trough, low-level PV maximum, mid-level jet, a warm Mexican airmass and STJ exit region that was co-located and moved across the Gulf Coast States as a coupled system. Initially, a STJ exit region (with thermally indirect ageostrophic circulation) approached the Gulf Coast creating upper-level divergence and ascent, which helped to maintain a low-level trough. A warm Mexican airmass was located over the Gulf Coast (southeast of the surface trough) creating a northwestward-directed PGF, which created a mid-level jet. The right entrance region of the mid-level jet and its associated thermally direct circulation (ascent) was over the low-level trough. These features created an environment favorable to deep convection and the release of latent heat that generated low-level PV. In the non-event case, these features (low-level warm Mexican airmass, mid-level jet, deep convection, low-level PV and low-level trough) were absent over the Gulf Coast States. Received December 23, 1999 Revised January 16, 2000  相似文献   

6.
Tracer transport in the atmosphere is controlled not only by synoptic-scale to mesoscale weather disturbances but also by microscale boundary-layer processes especially under fair-weather conditions. The present study investigates numerically the diurnal variation of boundary-layer convection and cumulus clouds and their role in transporting tracers by conducting high-resolution simulations that explicitly resolve turbulent eddies. The transport of dust aerosols in a desert area under two distinct stability conditions is specifically examined. Convection plays a significant role in transporting dust upward; in other words, the vertical depth of the dust transport is critically determined by the depth of convection. Deep convection is effective in transporting dust into the free atmosphere. The early morning stratification strongly regulates the temporal evolution and the vertical growth of convection and therefore the amount of tracer emission and transport. A sensitivity to model resolution of O (1 km) in a cloud-resolving simulation range is also examined. A proper parameterization for activating microscale convection is required for representing the diurnal variation of convection and tracer transport.  相似文献   

7.
We investigate the impact of 1/8°, 1/16°, 1/32°, and 1/64° ocean model resolution on model–data comparisons for the Gulf Stream system mainly between the Florida Straits and the Grand Banks. This includes mean flow and variability, the Gulf Stream pathway, the associated nonlinear recirculation gyres, the large-scale C-shape of the subtropical gyre and the abyssal circulation. A nonlinear isopycnal, free surface model covering the Atlantic from 9°N to 47°N or 51°N, including the Caribbean and Gulf of Mexico, and a similar 1/16° global model are used. The models are forced by winds and by a global thermohaline component via ports in the model boundaries. When calculated using realistic wind forcing and Atlantic model boundaries, linear simulations with Munk western boundary layers and a Sverdrup interior show two unrealistic mean Gulf Stream pathways between Cape Hatteras and the Grand Banks, one proceeding due east from Cape Hatteras and a second one continuing northward along the western boundary until forced eastward by the regional northern boundary. The northern pathway is augmented when a linear version of the upper ocean global thermohaline contribution to the Gulf Stream is added as a Munk western boundary layer. A major change is required to obtain a realistic pathway in nonlinear models. Resolution of 1/8° is eddy-resolving but mainly gives a wiggly version of the linear model Gulf Stream pathway and weak abyssal flows except for the deep western boundary current (DWBC) forced by ports in the model boundaries. All of the higher resolution simulations show major improvement over the linear and 1/8° nonlinear simulations. Additional major improvement is seen with the increase from 1/16° to 1/32° resolution and modest improvement with a further increase to 1/64°. The improvements include (1) realistic separation of the Gulf Stream from the coast at Cape Hatteras and a realistic Gulf Stream pathway between Cape Hatteras and the Grand Banks based on comparisons with Gulf Stream pathways from satellite IR and from GEOSAT and TOPEX/Poseidon altimetry (but 1/32° resolution was required for robust results), (2) realistic eastern and western nonlinear recirculation gyres (which contribute to the large-scale C-shape of the subtropical gyre) based on comparisons with mean surface dynamic height from the generalized digital environmental model (GDEM) oceanic climatology and from the pattern and amplitude of sea surface height (SSH) variability surrounding the eastern gyre as seen in TOPEX/Poseidon altimetry, (3) realistic upper ocean and DWBC transports based on several types of measurements, (4) patterns and amplitude of SSH variability which are generally realistic compared to TOPEX/Poseidon altimetry, but which vary from simulation to simulation for specific features and which are most realistic overall in the 1/64° simulation, (5) a basin wide explosion in the number and strength of mesoscale eddies (with warm core rings (WCRs) north of the Gulf Stream, the regional eddy features best observed by satellite IR), (6) realistic statistics for WCRs north of the Gulf Stream based on comparison to IR analyses (low at 1/16° resolution and most realistic at 1/64° resolution for mean population and rings generated/year; realistic ring diameters at all resolutions), and (7) realistic patterns and amplitude of abyssal eddy kinetic energy (EKE) in comparison to historical measurements from current meters.  相似文献   

8.
The results of numerical simulations of the troposphere over the Bay of La Paz, calculated for the months of January, April, July and October during the period 2006–2010 with the Weather Research and Forecast (WRF v3.5) regional model, are used to describe the seasonal features of the diurnal cycle of planetary boundary-layer winds. Two distinct near-surface diurnal flows with strong seasonal variability were identified: (1) a nocturnal and matutinal breeze directed from the subtropical Pacific Ocean, over the Baja California peninsula and the Bay of La Paz, into the Gulf of California that is associated with the regional sea-surface temperature difference between those two major water bodies; and (2) a mid to late afternoon onshore sea-breeze related to the peninsula’s daily cycle of insolation heating that evolves with counter-clockwise rotation over the Bay of La Paz. The model results reveal the interaction over Baja California of opposing afternoon sea-breeze fronts that originate from the subtropical Pacific Ocean and the Gulf of California, with a convergence line forming over the peaks of the peninsula’s topography and the associated presence of a closed vertical circulation cell over the Bay of La Paz and the adjacent Gulf. The collision of the opposing sea-breeze fronts over the narrow peninsula drives convection that is relatively weak due to the reduced heat source and only appears to produce precipitation sporadically. The spatial structure of the sea-breeze fronts over the Bay of La Paz region is complex due to shoreline curvature and nearby topographic features. A comparison of the numerical results with available meteorological near-surface observations indicates that the modelling methodology adequately reproduced the observed features of the seasonal variability of the local planetary boundary-layer diurnal wind cycle and confirms that the low-level atmospheric circulation over the Bay of La Paz is dominated by kinetic energy in the diurnal band. The strongest (weakest) diurnal flows occur during the summer (winter) in response to the seasonally varying magnitudes of the daily land–sea thermal contrast and the regional subtropical Pacific Ocean–Gulf of California sea-surface temperature difference.  相似文献   

9.
The boundary-layer development and convection-pattern transition typically occurring in cold-air outbreaks is studied using three-dimensional simulations. The simulations include the secondary-flow transition starting with the relatively small-scale boundary-layer rolls developing during the initial phase and ending with mesoscale cellular convection patterns. The application of a computational grid, whose horizontal mesh size enables the resolution of the small-scale initial patterns and whose domain size is large enough to capture mesoscale convection patterns, overcharges even state-of-the-art supercomputers. In order to bypass the computer storage problem, the horizontal size of the model domain and the horizontal resolution of the computational grid are adjusted to the scale of the dominant convective structures. This enables the simulation of convection cells whose horizontal scales increase up to values exceeding the size of the initial model domain. The model is applied to conditions of a cold-air outbreak observed during the ARKTIS 1991 experiment. The most important characteristics of the observed situation are revealed by the model. Sensitivity studies are performed in order to investigate the relation between cell broadening and various physical processes. The artificial cutoff of liquid-water formation prevents the enlargement of convective scales. Latent heating due to condensation and especially radiative cloud-top cooling are identified as processes leading to cell broadening. We propose a conceptual model that elucidates the mechanism by which cloud-top cooling may generate larger aspect ratios.  相似文献   

10.
The model for the cloud-topped marine boundary layer during a cold air outbreak developed by Stage and Businger (1981a) is used in conjunction with a test profile based on a fall outbreak episode over Lake Ontario to study factors influencing marine boundary-layer evolution. Sensitivity tests are done which show changes in layer evolution resulting from variation of wind speed, radiative sky temperature, water surface temperature, humidity of the shoreline sounding and divergence. The behavior of the layer in the presence of a region of cold-water upwelling near the shore is also investigated. It is found that the main effect of the upwelling region is to delay modification of the boundary-layer air.  相似文献   

11.
The particle trajectories and transport effects of coherent vortices are computed and a number of advection and diffusion experiments using a time-dependent dynamical ring model are analyzed. Several features of the tracer distributions in the numerical solutions are similar to features noted in sea surface temperature images of Gulf Stream rings and are discussed from the point of view of the model. Comparisons between tracer distributions computed using the dynamic ring model and several purely kinematic ring representations demonstrate that most of the important features of ring transport are not altered by slow dynamical evolution. Loss rates from the ring trapped zone are also estimated, which permits calculation of cross-Gulf Stream chemical and biological fluxes due to ring formation. We demonstrate that the salinoty flux to the Slope Water caused by rings is comparable to that caused by the atmosphere.The transport of passive scalars produced by a series of rings moving through a channel (modeling the Slope Water region between the Shelf and the Gulf Stream) is computed. It is found that transport in the along-channel direction is enhanced by the presence of rings and is characterized by Nusselt numbers of 0(30–40). Cross-channel fluxes, while enhanced, are somewhat less affected by rings, and are generally characterized by Nusselt numbers < 0(10). The combined effect of rings on the Slope is seen to make it an anisotropic medium, with along-channel transport one to two orders of magnitude more efficient than cross-channel transport. The implications with respect to the Slope are discussed.  相似文献   

12.
A three-dimensional model of the mesoscale surface boundary layer of the open ocean is developed through scale analysis of the primitive equations with mixing included. A set of surface boundary-layer equations appropriate for a broad range of oceanic and atmospheric scales is thereby derived. The essential basis of the model is a coupling between quasigeostrophic dynamics away from the boundary layer and arbitrary mixing models within the mixed layer. The coupling consists of advection of the boundary layer by the horizontal and vertical components of the interior quasigeostrophic flow and forcing of the interior by the boundary layer in the form of divergence within the boundary layer which leads to vortex stretching/compression in the interior. The divergence is generalized for mesoscale wind-driven flows and includes nonlinear interaction between the directly wind-driven boundary-layer flow and the interior flow in the form of interior relative vorticity advection by the wind-driven flow. The nature of the equations leads us to apply a numerical algorithm to their solution. This algorithm is calibrated through application to idealized problems to determine the temporal and spatial grid requirements. The model is initialized with a realistic ocean flow having the properties of the Gulf Stream.  相似文献   

13.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24–48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982–April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.  相似文献   

14.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ∼70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

15.
Turbulence structure of the marine boundary layer (MBL) over the Gulf Stream and the adjacent coastal waters during the development of a storm is discussed. Prestorm conditions prevailed on 9 February and a meso-low formed on 10 February which intensified into an offshore cyclone on 11 February. Observations from aircraft, buoys and ships were made as part of the Genesis of Atlantic Lows Experiment (GALE, 86) during these three days. Analysis of the high frequency (20 Hz) turbulence data collected from low-level flights by the NCAR King Air and Electra indicates the effect of the storm development on the turbulence structure of the MBL.Observational data over the stable region near the coast on 10 February revealed the presence of internal gravity waves. Spectral analysis indicates that the size and energy of the eddies increased over the Gulf Stream and also increased as the storm developed. Results obtained using conditional sampling techniques suggest that intense narrower warm updrafts dominate the total heat flux. The broader, less intense cool downdrafts seem to occupy a large portion of the Gulf Stream.  相似文献   

16.
The sigma coordinate, Princeton Ocean Model (POM) has been configured for the North Atlantic Ocean between 5°N and 50°N as part of data assimilation, model predictability and intercomparison studies. The model uses a curvilinear orthogonal grid with higher resolution in the western North Atlantic and lower resolution in the eastern North Atlantic. A series of experiments, each one of a 10-year duration, are performed to evaluate the sensitivity of the ocean mean state and variability to model parameters and model configuration; these experiments include open vs. closed boundary conditions, low vs. high resolution grids, and different choices of diffusion and viscosity. The results show that the use of closed boundaries together with near-boundary buffer zones where temperature and salinity are relaxed towards the observed values give less realistic flows, weaker recirculation gyres and less realistic Gulf Stream separation than do open boundary conditions. The experiments show that the sensitivity of the ocean variability in the model to the choice of the Smagorinsky diffusion and viscosity coefficients significantly differs from one region to another and largely depends on other attributes such as the mean position of the Gulf Stream in each simulation. A 50% change in model resolution in the Gulf Stream region has a larger effect on ocean variability than a change of diffusivity by a factor of 10. In areas where either the high or the low resolution models have sufficient resolution, as in the Gulf of Mexico, they are able to produce variability comparable to that observed from altimeter data; elsewhere, model variability is underestimated.  相似文献   

17.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and 70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

18.
The interannual variability of the European winter air temperature is partially caused by anomalous atmospheric circulation and the associated advection of air masses, mainly linked to the North Atlantic Oscillation (NAO). However, a considerable part of the temperature variability is not linearly described by atmospheric circulation anomalies. Here, a long control simulation with a coupled atmosphere-ocean climate model is analyzed, with the goal of decomposing the European temperature (ET) anomalies in a part linked to the anomalous atmospheric circulation and a residual. The amount of interannual variability of each contribution is roughly 50%, although at subdecadal (overdecadal) time scales the variability of the residuals is dominant. These residuals are found to be linked to temperature anomalies of the same sign in the whole North Atlantic and Greenland, in contrast to the well-known temperature zonal seesaw associated with the NAO. The association between the residuals and other processes in the North Atlantic has been also analyzed. The thermohaline circulation, closely connected in the model to the intensity of the Gulf Stream, lags the evolution of the temperature residuals by several years and thus is not able to control their evolution. The variability of the oceanic convection in the Northern North Atlantic, on the other hand, correlates with the temperature residual at lags close to zero. It is hypothesized that oceanic convection produces a sea-surface temperature fingerprint that leads to the ET residuals. The implications of these results for multi-year predictability and for empirical climate reconstructions are discussed.  相似文献   

19.
Ship borne measurements of atmospheric boundary layer (ABL) parameters, sea-surface temperature and radar signals are analyzed to reveal the effects of the ABL transformation above the Gulf Stream temperature frontal zone. It was found that local changes in vertical gradients of wind speed and air temperature are well correlated with sub-mesoscale (~ 10 km) sea surface temperature variations. These effects are accompanied by appropriate variations in surface wind stresses that were identified from microwave backscatter.For steady atmospheric conditions the same effects were observed on spatial scales of 100 km, demonstrating positive radar signal contrast of the Gulf Stream warm waters with respect to surrounding Sargasso sea and shelf water areas. A simplified model of the ABL, accounting for an effect of spatial inhomogeneity by introducing an internal boundary layer, is used to analyze field observations. The model is able to reproduce both sub-mesoscale and mesoscale ABL evolution.  相似文献   

20.
Stable internal boundary layers form when warm air isadvected over a cooler surface, a common occurrence incoastal areas. The internal boundary layer deepenswith distance along-wind, eventually reachingequilibrium with the surface and becoming a fullydeveloped marine boundary layer. We presentobservations of the late stages of internalboundary-layer evolution made bythe U.K. Meteorological Office'sC-130 Hercules research aircraft over the Persian Gulfin April 1996. Northwesterly winds brought warm dryair from the surrounding desert landmass across thecooler waters of the Gulf. Loss of heat to the surfaceresulted in the formation of a shallow, stableinternal boundary layer downwind of the coast. The aircraftmeasurements were made several hundred kilometresdownwind, by which point the original deep convectiveboundary layer had been eroded away and the internalboundary layer was well developed, effectively a newmarine atmospheric boundary layer. Throughout most ofits depth the boundary layer was statically stable anda downward heat flux of approximately 15 W m-2was observed; however, an exceptionally strong latentheat flux, in excess of 250 W m-2 near thesurface, was sufficient to overcome the downwards heatflux and maintain weak buoyant convection in the lower30–50% of the boundary layer.Scaling of boundary-layer turbulence statistics usinglocal similarity theory produces results in agreementwith previous studies. Because of the strong humiditycontribution to the buoyancy flux, however, care isrequired with the definition of the similarity scales.It is usual for either the sensible heat or buoyancyflux to be used in the definitions of both thetemperature and length scales; the latter being usedover water where humidity plays a significant role indetermining stability. In the present case we findthat while the buoyancy flux is appropriate in thedefinition of the length scale, the temperature scalemust be defined in terms of the sensible heat flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号