首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
随着水资源短缺程度的加剧,可交易水权制度逐渐成为当今世界水资源管理制度发展的新方向.水资源初始产权是水资源管理的基础和前提.在干旱区内陆河流域,产权初始配置要在生态环境可持续的前提下,坚持公平、效益相结合的分配目标和配置原则.通过建立初始水权配置指标体系,对黑河流域进行实地问卷调查,在此基础上对用户调查结果进行专家判断修正,应用层次分析法研究了各分配指标的权重分布.以黑河流域张掖地区为例的界定结果表明,除上游的肃南县和山丹县外,其余各县市的实际用水量都超过了各自界定的初始水权,这种差别为水资源产权交易管理提供了现实依据,为开展流域上游的生态保护补偿提供了理论基础.  相似文献   

2.
In this paper, optimal operating rules for water quality management in reservoir–river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir–river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir–River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.  相似文献   

3.
Conjunctive use of surface and groundwater is an effective approach to relief water resources shortages and its uneven temporal and spatial distribution in arid inland regions of central Asia. In this paper, 16 characteristic factors of water resources and related systems which are sensitive to different types of conjunctive use were selected in order to develop an index system for evaluation impact of conjunctive use, based on the fundamental types of water resources conjunctive use in inland basins. In an attempt to address the issue of spring drought and summer floods in Tailan River Basin in Xinjiang, three scenarios of conjunctive use of surface water and groundwater, well-canal combination, piedmont reservoirs and groundwater reservoirs were investigated. The utilization of water resources and the response of its related systems were evaluated and analyzed quantitatively using the groundwater numerical simulation model (Visual MODFLOW). Furthermore, the impacts of conjunctive use were assessed using the method of multi-level fuzzy comprehensive assessment. The results show that the scheme of combination of Laolongkou piedmont reservoir regulation-groundwater development, is the best in terms of the evaluation of water conjunctive use effects, followed by the well-canal combination. The comprehensive effect of well-canal combination along with groundwater reservoir wouldn’t be better than the former both.  相似文献   

4.
Water quality management along rivers involves making water-allocation plans, establishing water quality goals, and controlling pollutant discharges, which is complicated itself but further challenged by existence of uncertainties. In this study, an inexact two-stage stochastic downside risk-aversion programming (ITSDP) model is developed for supporting regional water resources allocation and water quality management problems under uncertainties. The ITSDP method is a hybrid of interval-parameter programming, two-stage stochastic programming, and downside risk measure to tackle uncertainties described in terms of interval values and probability distributions. A water quality simulation model was provided for reflecting the relationship between the water resources allocation, wastewater discharge, and environmental responses. The proposed approach was applied to a hypothetical case for a shared stream water quality management with one municipal, three industrial and two agricultural sectors. A number of scenarios corresponding to different river inflows and risk levels were examined. The results demonstrated that the model could effectively communicate the interval-format and random uncertainties, and risk-aversion into optimization process, and generate a trade-off between the system economy and stability. They could be helpful for seeking cost-effective management strategies under uncertainties, and gaining an in-depth insight into the water quality management system characteristics, and make cost-effective decisions.  相似文献   

5.
Abstract

Groundwater is an important water resource and its management is vital for integrated water resources development in semiarid catchments. The River Shiyang catchment in the semiarid area of northwestern China was studied to determine a sustainable multi-objective management plan of water resources. A multi-objective optimization model was developed which incorporated water supplies, groundwater quality, ecology, environment and economics on spatial and temporal scales under various detailed constraints. A calibrated groundwater flow model was supplemented by grey simulation of groundwater quality, thus providing two lines of evidence to use in the multi-objective water management. The response matrix method was used to link the groundwater simulation models and the optimization model. Multi-phase linear programming was used to minimize and compromise the objectives for the multi-period, conjunctive water use optimization model. Based on current water demands, this water use optimization management plan was able to meet ecological, environmental and economic objectives, but did not find a final solution to reduce the overall water deficit within the catchment.  相似文献   

6.
Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte–Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga–Bhadra river system in southern India, with a steady state BOD–DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality.  相似文献   

7.
Flow exchange between surface and groundwater is of great importance be it for beneficial allocation and use of water resources or for the proper exercise of water rights. In large‐scale regional studies, most numerical models use coarse grid sizes, which make it difficult to provide an accurate depiction of the phenomenon. In particular, a somewhat arbitrary leakance coefficient in a third type (i.e., Cauchy, General Head) boundary condition is used to calculate the seepage discharge as a function of the difference of head in the river and in the aquifer, whose value is often found by calibration. A different approach is presented to analytically estimate that leakance coefficient. It is shown that a simple equivalence can be deduced from the analytical solution for the empirical coefficient, so that it provides the accuracy of the analytical solution while the model maintains a very coarse grid, treating the water‐table aquifer as a single calculation layer. Relating the empirical leakance coefficient to the exact conductance, derived from physical principles, provides a physical basis for the leakance coefficient. Factors such as normalized wetted perimeter, degree of penetration of the river, presence of a clogging layer, and anisotropy can be included with little computational demand. In addition the river coefficient in models such as MODFLOW, for example, can be easily modified when grid size is changed without need for recalibration.  相似文献   

8.
The state of Texas has implemented a modeling system for assessing the availability and reliability of water resources that consists of a generalized simulation model called the Water Rights Analysis Package (WRAP) and input datasets for the state's 23 river basins. Reservoir/river system management and water allocation practices are simulated using historical naturalized monthly streamflow sequences to represent basin hydrology. Institutional systems for allocating streamflow and reservoir storage resources among numerous water users are considered in detail in evaluating basinwide impacts of water management decisions. The generalized WRAP model is a flexible tool that may be applied to river basins anywhere. The Texas experience in implementing a statewide modeling system illustrates issues that are relevant to water management in many other regions of the world.  相似文献   

9.
10.
In this paper, details of a conjunctive surface-subsurface numerical model for the simulation of overland flow are presented. In this model, the complete one-dimensional Saint-Venant equations for the surface flow are solved by a simple, explicit, essentially non-oscillating (ENO) scheme. The two-dimensional Richards equation in the mixed form for the subsurface flow is solved using an efficient strongly implicit finite-difference scheme. The explicit scheme for the surface flow component results in a simple method for connecting the surface and subsurface components. The model is verified using the experimental data and previous numerical results available in the literature. The proposed model is used to study the two-dimensionality effects due to non-homogeneous subsurface characteristics. Applicability of the model to handle complex subsurface conditions is demonstrated.  相似文献   

11.
一种水污染的综合控制模型   总被引:1,自引:1,他引:0  
扎黑尔  崔广柏 《湖泊科学》2002,14(2):125-133
本文将水质预测及水污染控制措施有机地结合,选取水环境容量和污染指数作为水污染控制的参数,这样,一给对流-扩散水质方程的求解除就是实现本研究目的的关键,本研究彩和的模型在现有的水质模型基础上有所改进,因为其采用四点隐格式对水质进行预测,推求可接给污染物的环境容量值有为保证水质而陷定的污染物浓度值,从而制定相应的水污染控制措施,为整体考虑各种污染物的情况,建议彩和河流的污染指数进而推求综合污染指数,总之,本研究为水质保护提供了科学的计算方法,该法对水污染及污水对河道水质的影响是实用有效的。  相似文献   

12.
Macro-evolution is a new kind of high-level species evolution inspired by the dynamics of species extinction and diversification at large time scales. Immune algorithms are a set of computational systems inspired by the defense process of the biological immune system. By taking advantage of the macro-evolutionary algorithm and immune learning of artificial immune systems, this article proposes a macro-evolutionary multi-objective immune algorithm (MEMOIA) for optimizing multi-objective allocation of water resources in river basins. A benchmark test problem, namely the Viennet problem, is utilized to evaluate the performance of the proposed new algorithm. The study indicates that the proposed algorithm yields a much better spread of solutions and converges closer to the true Pareto frontier compared with The Non-dominated Sorting Genetic Algorithm and Improving the Strength Pareto Evolutionary Algorithm. MEMOIA is applied to a water allocation problem in the Dongjiang River basin in southern China, with three objectives named economic interests (OF 1), water shortages (OF 2) and the amount of organic pollutants in water (OF 3). The results demonstrate the capabilities of MEMOIA as well as its suitability as a viable alternative for enhanced water allocation and management in a river basin.  相似文献   

13.
The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.  相似文献   

14.
Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a “coefficient.” This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream‐aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross‐section, (2) the degree of penetration of the cross‐section, and (3) the shape of the cross‐section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods.  相似文献   

15.
Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical, and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers and river heat fluxes is essential for effective management of water and fisheries resources. This study dealt with the modelling of river water temperature using a deterministic model. This model calculated the different heat fluxes at the water surface and from the streambed using different hydrometeorological conditions. The water temperature model was applied on two watercourses of different sizes and thermal characteristics, but within a similar meteorological region, namely, the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). The model was also applied using microclimate data, i.e. meteorological conditions within the river environment (1–2 m above the water surface), for a better estimation of river heat fluxes. Water temperatures at different depths within the riverbed were also used to estimate the streambed heat fluxes. Results showed that microclimate data were essential to get accurate estimates of the surface heat fluxes. Results also showed that for larger river systems, the surface heat fluxes were generally the dominant component of the heat budget with a correspondingly smaller contribution from the streambed. As watercourses became smaller and groundwater contribution more significant, the streambed contribution became important. For instance, approximately 80% of the heat fluxes occurred at the surface for Catamaran Brook (20% from the streambed) whereas the Little Southwest Miramichi River showed values closer to 90% (10% from the streambed). As was reported in previous studies, the solar radiation input dominated the contribution to the heat gain at 63% for Catamaran Brook and 89% for Little Southwest Miramichi River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Classical optimization methodologies based on mathematical theories have been developed for the solution of various constrained environmental design problems. Numerical models have been widely used to represent an environmental system accurately. The use of methodologies such as artificial neural networks (ANNs), which approximate the complicated behaviour and response of physical systems, allows the optimization of a large number of case scenarios with different set of constraints within a short period of time, whereas the corresponding simulation time using a numerical model would be prohibitive. In this paper, a combination of an ANN with a differential evolution algorithm is proposed to replace the classical finite‐element numerical model in water resources management problems. The objective of the optimization problem is to determine the optimal operational strategy for the productive pumping wells located in the northern part of Rhodes Island in Greece, to cover the water demand and maintain the water table at certain levels. The conclusions of this study show that the use of ANN as an approximation model could (a) significantly reduce the computational burden associated with the accurate simulation of complex physical systems and (b) provide solutions very close to the optimal ones for various constrained environmental design problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Abstract A hydrological simulation model was developed for conjunctive representation of surface and groundwater processes. It comprises a conceptual soil moisture accounting module, based on an enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module and a module for partitioning water abstractions among water resources. The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual and automatic sessions. For the latter, an innovative optimization method called evolutionary annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit criteria for multiple variables with different observation periods, as well as penalty terms for restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. Checks of the unmeasured catchment responses through manually changing parameter bounds guided choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and also other important components. Emphasis is put on the principle of parsimony which resulted in a computationally effective modelling. This is crucial since the model is to be integrated within a stochastic simulation framework.  相似文献   

18.
基于熵值环境基尼系数法的平原河网区污染物总量分配   总被引:1,自引:0,他引:1  
为制定科学合理的水污染物总量控制方案,以典型平原河网地区——张家港市为例,构建与人口、资源、经济和水污染物承受能力相协调的单因子环境基尼系数模型,并通过贡献系数判断引起不公平的主要污染物分配单元.利用熵值—环境基尼系数最小化模型,确定张家港市各乡镇基于多元公平性原则的氨氮总量分配方案.结果表明:在水污染物总量分配过程中,污染物削减比例的大小和污染物现状排放量之间并不具有一致性,最终的分配方案要综合考虑多方因素确定.本研究构建的熵值—环境基尼系数最小化模型综合考虑了研究区域社会、经济、资源等多种客观因素,对于平原河网地区,由于其特殊的地理位置和自然条件,人口、资源等分布相对比较均匀,故基于该模型所得到的分配方案充分表现了多元公平性原则,更公平合理.  相似文献   

19.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

20.
Reservoir system reliability is the ability of reservoir to perform its required functions under stated conditions for a specified period of time. In classical method of reservoir system reliability analysis, the operation policy is used in a simple simulation model, considering the historical/synthetic inflow series and a number of physical bounds on a reservoir system. This type of reliability analysis assumes a reservoir system as fully failed or functioning, called binary state assumption. A number of researchers from various research backgrounds have shown that the binary state assumption in the traditional reliability theory is not extensively acceptable. Our approach to tackle the present problem space is to implement the algorithm of advance first order second moment (AFOSM) method. In this new method, the inflow and reservoir storage are considered as uncertain variables. The mean, variance and covariance of uncertain variables are determined using moment values of reservoir state variables. For this purpose, a stochastic optimization model developed based on the constraint state formulation is applied. The proposed model of reliability analysis is used to a real case study in Iran. As a result, monthly probabilities of water allocation were computed from AFOSM method, and the outputs were compared with those from Monte Carlo method. The comparison shows that the outputs from AFOSM method are similar to those from the Monte Carlo method. In term of practical use of this study, the proposed method is appropriate to determine the monthly probability of failure in water allocation without the aid of simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号