首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The volume variation as a function of pressure along the jadeite–aegirine solid solution was determined at room temperature up to pressures between 6.5 and 9.7 GPa by single-crystal X-ray diffraction. The unit-cell volumes collected at room pressure for the different compositions indicate a slight deviation from linearity along the join. The pressure–volume data have been fitted using a third-order Birch-Murnaghan equation of state (BM3-EoS). The bulk modulus, K T0, varies from 134.0(7) GPa for pure jadeite to 116.1(5) GPa for pure aegirine. Its evolution with composition along the join is not linear and can be described by the following second order polynomial:
(1)
The value of the first pressure derivative K′ is close to 4 for all the samples investigated and can be used in a BM3-EoS to determine the volume variations of these pyroxenes up to 7–10 GPa. Along the join the highest compressibility among the crystallographic directions is always observed along a, however, the compression along b is the most affected by compositional changes. The strain ellipsoid analysis indicates that the major compression occurs on the (0 1 0) plane along a direction at about 145° to the c axis (from c to a). The anisotropy of the compression increases with increasing the aegirine component, as confirmed by the analysis of both the axial compressibility and the strain tensor.  相似文献   

2.
The normal modes of vibration and their frequencies are calculated for dioptase, a mineral whose crystal structure (space group R or C 3i 2 ) consists of puckered six-membered silicate rings (Si6O18) linked by Cu2+ ions and H2O groups. The calculation employs a valence force potential consisting of central interactions between nearest neighbors and bond-bending interactions centered at the Si4+ and Cu2+ ions. The force constants are determined by fitting the calculated frequencies to values obtained by measuring the single-crystal Raman spectra. The calculated frequencies are in reasonable agreement with experiment, permitting assignment of normal modes to the observed spectral frequencies. Considerable mixing of Cu and H2O motions with those of the ring is found for the Raman-active modes below 430 cm-1. The normal modes and frequencies of the hypothetical isolated ring with C 3i symmetry are determined by neglecting all interactions between the rings and the surrounding Cu and H2O. The identification of normal modes characteristic of the puckered six-membered silicate rings and the effect of the environment on these modes may prove useful in the interpretation of the Raman spectra of amorphous silicates.  相似文献   

3.
Two synthetic single-crystals with composition Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6 and space group C2/c at room conditions have been studied under pressure by means of X-ray diffraction using a diamond anvil cell. The unit-cell parameters were determined at 12 and 10 different pressures up to P = 8.849 and P = 7.320 GPa for Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6, respectively. The sample with mixed composition shows a C2/c to P21/c phase transformation between 1.814 and 2.156 GPa, first-order in character. The transition is characterised by a large and discontinuous decrease in the unit-cell volume and by the appearance of the b-type reflections (h + k = odd) typical of the primitive symmetry. The Ga end-member shows the same C2/c to P21/c transformation at a pressure between 0.0001 and 0.39 GPa. The low-pressure value at which the transition occurred did not allow collecting any data in the C2/c pressure stability field except that on room pressure. Our results compared with those relative to spodumene (LiAlSi2O6, Arlt and Angel 2000a) indicate that the substitution of Al for Ga at the M1 site of Li-clinopyroxenes strongly affects the transition pressure causing a decrease from 3.17 GPa (spodumene) to less than 0.39 GPa (LiGaSi2O6) and decreases the volume discontinuity at the transition. As already found for other compounds, the C2/c low-pressure phases are more rigid than the P21 /c high-pressure ones. Moreover, the increase of the M1 cation radius causes a decrease in the bulk modulus K T0. The axial compressibility among the Li-bearing clinopyroxenes indicates that the c axis is the most rigid for the C2/c phases while it becomes the most compressible for the P21 /c phases.  相似文献   

4.
The existence of an incomplete solid solution series between loparite (NaLREETi2O6), a member of the perovskite mineral group, and thorutite (ThTi2O6) is established on the basis of experimental and mineralogical data. The products of low- and high-pressure synthesis in the system NaLaTi2O6– ThTi2O6 were studied by energy-dispersive spectrometry, X-ray diffractometry and Rietveld analysis. At atmospheric pressure, Th is incorporated in loparite as both ThTi2O6 and Na2ThTi3O9. In synthetic systems, the maximum determined ThTi2O6 content of loparite is 18 mol%, with a corresponding A-site cation deficiency of 9%. The structure of such loparite is tetragonal and presumably derived from the cubic aristotype by octahedral rotation [I4/mcm, a=5.4652(1) Å, c=7.7476(2) Å]. At a pressure of 6 GPa, no solubility between loparite and ThTi2O6 is observed, and Th is accommodated in the loparite structure entirely as Na2ThTi3O9 (up to 30 mol%). Naturally occurring loparite contains up to 29 mol% ThTi2O6, based on the conventional method of analysis recalculation, or 23.5 mol% ThTi2O6, assuming the presence of protons at the vacant A-sites. ThTi2O6 synthesized by the solid-state reaction, crystallizes with monoclinic symmetry [C2/m, a=9.8140(2) Å, b=3.8228(1) Å, c=7.0313(2) Å,β=118.82(1)°]. Atomic coordinates for ThTi2O6 obtained in this study from X-ray powder data, as well as structural parameters derived from the new data, are in a good agreement with those known from single-crystal refinement. ThTi2O6 does not crystallize at high pressure, and Th is accommodated in perovskite-type compounds and cubic ThO2 that provide a twelve- and eight-fold coordination site for Th, respectively.  相似文献   

5.
The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01–3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3–4 mm in size; less frequently, 4 × 12–15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522–604, 575 kg/mm2; and the Mohs hardness is 5.0–5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2V meas = 63(±1)°, 2V calc = 66.2°; the refractive indices are α = 1.502–1.507 (±0.002), N m = 1.509–1.514 (±0.002), and N g = 1.512–1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern (dÅ—I[hkl]) are: 6.61–5[015], 6.43–11[020, 006], 3.71–100[119, 133], 2.623–30[20.12, 240], 2.273–6[04.12], 2.141–14[159, 13.15], 1.783–9[06.12, 04.18], and 1.606–6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947–2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.  相似文献   

6.
The compound NaFeGe2O6 was grown synthetically as polycrystalline powder and as large single crystals suitable for X-ray and neutron-diffraction experiments to clarify the low temperature evolution of secondary structural parameters and to determine the low temperature magnetic spins structure. NaFeGe2O6 is isotypic to the clinopyroxene-type compound aegirine and adopts the typical HT-C2/c clinopyroxene structure down to 2.5?K. The Na-bearing M2 polyhedra were identified to show the largest volume expansion between 2.5?K and room temperature, while the GeO4 tetrahedra behave as stiff units. Magnetic susceptibility measurements show a broad maximum around 33?K, which marks the onset of low-dimensional magnetic ordering. Below 12?K NaFeGe2O6 transforms to an incommensurately modulated magnetic spin state, with k?=?[0.323, 1.0, 0.080] and a helical order of spins within the M1-chains of FeO6 octahedra. This is determined by neutron-diffraction experiments on a single crystal. Comparison of NaFeGe2O6 with NaFeSi2O6 is given and it is shown that the magnetic ordering in the latter compound, aegirine, also is complex and is best described by two different spin states, a commensurate one with C2??/c?? symmetry and an incommensurate one, best being described by a spin density wave, oriented within the (1 0 1) plane.  相似文献   

7.
《Applied Geochemistry》2002,17(10):1305-1312
The effect of different drying conditions on the stability of NaNd(CO3)·6H2O and NaEu(CO3)·6H2O and the identity of the decomposition product have been investigated. The rate of decomposition and the nature of the altered phases are dependant on the drying conditions used. When the phases are oven dried at 120 °C, the decomposition is immediate and the phase completely alters to Nd2(CO3)3 or Eu2(CO3)3 respectively. Under less severe drying conditions, the Na rare earth carbonate phases alter to Nd2(CO3)3·8H2O and Eu2(CO3)3·8H2O over a period of 24–48 h, but they can be kept indefinitely in a water saturated environment. The implications for using Nd and Eu as actinide analogues are discussed.  相似文献   

8.
A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) Å, β = 108.844(6)°, V = 442.75(16) Å3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the $(\bar{1}\,0\,1) A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) ?, β = 108.844(6)°, V = 442.75(16) ?3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the ([`1] 0 1)(\bar{1}\,0\,1) plane, mostly along [0 1 0], and pure shear in the (0 1 0) plane due to the decrease of β. From comparison with silicate analogues, the germanate clinopyroxenes are more expansible, while the P21/c expands more than the C2/c phase. The evolution of Q 2 (calculated as the normalized intensity of b-type reflections) with T in the framework of the Landau theory has been done using a standard expression for a first order phase transition. We observe a jump of Q 02 = 0.538(2) at T tr, with T c of 481(7) K, b/a = −2,290 K, and c/a = 3,192 K, and thus far from being tri-critical point. A closely related composition (LiFe3+Si2O6) shows an equivalent phase transition at 228 K, which is very close to the tri-critical point and 561 K cooler. This result indicates that a change in the composition of tetrahedral sites can have dramatic effects on the P21/c ↔ C2/c displacive phase transition in clinopyroxenes. The major changes observed in the evolution of the crystal structure with T are observed in the M2 polyhedron, with a volume decrease by ca. 13.3%, compared to ca. 1.3% observed in the M1 polyhedron. The tetrahedra behave as rigid units with neither a significant change of volume at T > T tr (<1‰), nor a change of tilting of the basal plane. No change in coordination is observed at T > T tr in the M2 polyhedron, which remains sixfold coordinated although a strong deformation of this polyhedron is observed. This deformation is related to a strong change by 51.4° at T tr of the kinking angle (O3–O3–O3 angle) of the B-chain of tetrahedra, which switches from O-rotated to S-rotated [from 143.3(5)° to 194.7(6)°]. The A-chain is S-rotated at T < T tr [206.8(5)° at 703 K] and extends by 12° at the transition.  相似文献   

9.
本文通过不同的熔融温度下Na_2O或Na_2Si F_6影响硅酸盐熔浆粘度值的实验研究,分析了火山岩熔浆分异的机制,提出了富铁高钠质硅酸盐熔浆分异为富铁熔浆甚至硫铁矿“流”的可能性。这一论点合理地解释了云南大红山矿区Ⅱ富铁矿体的成因。  相似文献   

10.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

11.
12.
本文采用合成溶胶凝胶中间体的技术方法,降低了硅酸盐熔体的熔化温度,并在1750~1850℃和2.0~4.0GPa条件下合面出9个SiO2-Al2O3-Na2O(K2O)系列淬火硅权盐熔体,淬火熔体中Na(K)/A1≤1属过铝质硅酸盐熔体,其激光拉曼微探针(LRM)研究表明,随压力增大,T-Onb在高频区(900~1200cm^-1)的对称和反对称伸缩振动频率明显减小,过铝质熔体中存在六配位铝,且随  相似文献   

13.
在1*10^5Pa,1400℃条件下实验合成了不同成分的Ni(1-x)ZnxFe2O4尖晶石,并将部分尖晶石在1100℃和1610℃条件下重新平衡。采用粉晶X射线衍射法测定了尖晶石的晶胞参数。将实测的尖晶石晶胞参数与理论计算值进行对比,结果发现,在温度小于1400℃时Ni(1-x)ZnxFe2O4尖晶石中的四面体主要由Zn^2+、Fe^3+占据,而八面体主要由Ni^2+、Fe^3+占据,但至少当温  相似文献   

14.
We define and calibrate a new model of molar volume as a function of pressure, temperature, ordering state, and composition for spinels in the supersystem (Mg, Fe2+)(Al, Cr, Fe3+)2O4 ? (Mg, Fe2+)2TiO4. We use 832 X-ray and neutron diffraction measurements performed on spinels at ambient and in situ high-P, T conditions to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg2+, Al3+, and Fe3+ site occupancy terms. We allow standard-state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of state of the various spinel end members are analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end-member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The preferred model has a total of 9 excess volume and order-dependent parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5 % in volume. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure.  相似文献   

15.
The thermal stability of sideronatrite, ideally Na2Fe3+(SO4)2(OH)·3(H2O), and its decomposition products were investigated by combining thermogravimetric and differential thermal analysis, in situ high-temperature X-ray powder diffraction (HT-XRPD) and Fourier transform infrared spectroscopy (HT-FTIR). The data show that for increasing temperature there are four main dehydration/transformation steps in sideronatrite: (a) between 30 and 40 °C sideronatrite transforms into metasideronatrite after the loss of two water molecules; both XRD and FTIR suggest that this transformation occurs via minor adjustments in the building block. (b) between 120 and 300 °C metasideronatrite transforms into metasideronatrite II, a still poorly characterized phase with possible orthorhombic symmetry, consequently to the loss of an additional water molecule; X-ray diffraction data suggest that metasideronatrite disappears from the assemblage above 175 °C. (c) between 315 and 415 °C metasideronatrite II transforms into the anhydrous Na3Fe(SO4)3 compound. This step occurs via the loss of hydroxyl groups that involves the breakdown of the [Fe3+(SO4)2(OH)] 2? chains and the formation of an intermediate transient amorphous phase precursor of Na3Fe(SO4)3. (d) for T > 500 °C, the Na3Fe(SO4)3 compound is replaced by the Na-sulfate thenardite, Na2SO4, plus Fe-oxides, according to the Na3Fe3+(SO4)3 → 3/2 Na2(SO4) + 1/2 Fe2O3 + SOx reaction products. The Na–Fe sulfate disappears around 540 °C. For higher temperatures, the Na-sulfates decomposes and only hematite survives in the final product. The understanding of the thermal behavior of minerals such as sideronatrite and related sulfates is important both from an environmental point of view, due to the presence of these phases in evaporitic deposits, soils and sediments including extraterrestrial occurrences, and from the technological point of view, due to the use of these materials in many industrial applications.  相似文献   

16.
海洋N2O的研究进展   总被引:1,自引:0,他引:1  
N2O在大气中的浓度仅为CO2的浓度的千分之一左右,但在同等浓度的情况下温室效应却是CO2的200~300倍;它在大气层中的光化学产物会与臭氧反应,从而损耗平流层的臭氧。N2O的环境效应引起人们的关注,许多国际气候变化研究项目都把其列入重要研究内容。通过对过去40年的相关研究工作进行综合分析,阐述N2O在海洋中的分布规律和其影响因素、产生的机制、它的海气通量及其影响因素,从而揭示N2O的海洋生物地球化学循环过程以及这一过程对全球氮循环的贡献。  相似文献   

17.
In order to determine the mechanisms of formation and properties of natural hydrosilicate liquids (HSLs), which are formed during the transition from magmatic to hydrothermal mineral formation in granitic pegmatites and rare-metal granites, the formation of HSLs was experimentally studied in the Na2O-SiO2-H2O, Na2O-Al2O3-SiO2-H2O, and Na2O-K2O-Li2O-Al2O3-SiO2-H2O systems at 600°C and 1.5 kbar. It was shown that the sequential extension of composition does not suppress HSL formation in the systems and expands the stability field of this phase. However, HSLs formed in extended chemical systems have different structure and properties: the addition of alumina induces some compression of the structure of the silicate framework of HSLs, which results in a decrease in water content in this phase and probably hinders the reversibility of its dehydration. It was demonstrated that HSL can be formed by the coagulation of silica present in a silica-oversaturated alkaline aqueous fluid. It was supposed that the HSL formed during this process has a finely dispersed structure. It was argued that anomalous enrichment in some elements in natural HSLs can be due to their sorption by the extensively developed surface of HSL at the moment of its formation.  相似文献   

18.
According to the compositions of the underground gasfield brines in the west of Sichuan Basin,the phase equilibria in the ternary systems KBr-K2B4O7-H2O and KCl-K2B4O7-H2O at 373 K were studied using the isothermal dissolution equilibrium method.The solubilities of salts and the densities of saturated solutions in these ternary systems were determined.Using the experimental data,phase diagrams and density-composition diagrams were constructed.The two phase diagrams were simple co-saturation type,each having an invariant point,two univariant curves and two crystallization regions.The equilibrium solid phases in the ternary system KBr-K2B4O7-H2O are potassium bromide (KBr) and potassium tetraborate tetrahydrate (K2B4O7·4H2O),and those in the ternary system KCl-K2B4O7-H2O are potassium chloride (KCl) and potassium tetraborate tetrahydrate (K2B4O7·4H2O).Comparisons of the phase diagrams of the two systems at different temperatures show that there is no change in the crystallization phases,but there are changes in the size of the crystallization regions.As temperature increases,the solubility of K2B4O7·4H2O increases rapidly,so the crystallization field of K2B4O7·4H2O becomes smaller.  相似文献   

19.
A new mineral, kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O, has been found at the Bazhenovskoe chrysotile asbestos deposit, the Central Urals, Russia in the cavities in rhodingite as a member of two assemblages: (l) on prehnite, with pectolite, calcite, and clinochlore; and (2) on grossular, with diopside and pectolite. Kasatkinite occurs as spherulites or bunches up to 3 mm in size, occasionally combined into crusts. Its individuals are acicular to hair-like, typically split, with a polygonal cross section, up to 0.5 mm (rarely, to 6 mm) in length and to 20 μm in thickness. They consist of numerous misoriented needle-shaped subindividuals up to several dozen μm long and no more than 1 μm thick. Kasatkinite individuals are transparent and colorless; its aggregates are snow white. The luster is vitreous or silky. No cleavage was observed; the fracture is uneven or splintery for aggregates. Individuals are flexible and elastic. The Mohs’ hardness is 4–4.5. D meas = 2.95(5), D calc = 2.89 g/cm3. Kasatkinite is optically biaxial (+), α = 1.600(5), β = 1.603(2), γ = 1.626(2), 2V meas = 30(20)°, 2V calc = 40°. The IR spectrum is given. The 11B MAS NMR spectrum shows the presence of BO4 in the absence of BO3 groups. The chemical composition of kasatkinite (wt %; electron microprobe, H2O by gas chromatography) is as follows: 0.23 Na2O, 0.57 K2O, 28.94 CaO, 16.79 BaO, 11.57 B2O3, 0.28 Al2O3, 31.63 SiO2, 0.05 F, 9.05 H2O, ?0.02 ?O=F2; the total is 99.09. The empirical formula (calculated on the basis of O + F = 41 apfu, taking into account the TGA data) is: Na0.11K0.18Ba1.66Ca7.84B5.05Al0.08Si8.00O31.80(OH)3.06F0.04 · 6.10H2O. Kasatkinite is monoclinic, space group P21/c, P2/c, or Pc; the unit-cell dimensions are a = 5.745(3), b = 7.238(2), c = 20.79 (1) Å, β = 90.82(5)°, V = 864(1) Å3, Z = 1. The strongest reflections (d Å–I[hkl]) in the X-ray powder diffractions pattern are: 5.89–24[012], 3.48–2.1[006], 3.36–24[114]; 3.009–100[ $12\bar 1$ , 121, $10\bar 6$ ], 2.925–65[106, $12\bar 2$ , 122], 2.633–33[211, 124], 2.116–29[ $13\bar 3$ , 133, 028]. Kasatkinite is named in honor of A.V. Kasatkin (b. 1970), a Russian amateur mineralogist and mineral collector who has found this mineral. Type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

20.
原X6022卧式铣床,由于工作台的升降、横向移动不能自动进刀,大大限制了使用范围。为适应地质机械修配需要,扩大机床使用范围,提高生产效率,我们将原X6022卧式铣床改为卧、立两用铣床,主要增加了一个可以旋转360度的立铣头。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号