首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   

2.
Understanding continental-slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive-margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long-term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now-buried slide scars and lobes; (2) slope-parallel bathymetric scarps representing shallow faults; (3) slope-perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope-confined gullies. Our results provide a multi-scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open-slope is delimited by faults, accommodating internal collapse of the margin. The now-buried slides were slope-confined and presumably cohesive, and mostly nucleated along the upper-slope faults. Sediment accumulations, infilling the now-buried scars, generated more recent open-slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past < 50 ka. South to north decrease in the volume of the open-slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long-term steady-state bathymetric profile. The latest phase slope-confined gullies were presumably created by channelling of bottom currents into slide-scar depressions, possibly establishing incipient canyon headword erosion.  相似文献   

3.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

4.
Sediment supplied by continental sources is commonly suspected to have exerted a strong influence on the development of canyons and other morphological features on the continental slopes, but rarely is the sediment supply known sufficiently quantitatively to test this link. Here, we outline an area where offshore morphology, in the western Ionian Sea, may be linked to estimated sediment fluxes produced by subaerial erosion in NE Sicily and SW Calabria. Shelves in this area are narrow (<1 km), and the bathymetry shows that rivers and adjacent submarine channels are almost directly connected with each other. Integrated topographic analyses were performed on a merged digital elevation model (DEM) of ASTER data for subaerial topography and multibeam sonar data for submarine bathymetry. Spatial variations in sediment fluxes from onshore erosion were assessed using a variety of methods, namely: long‐term sediment flux from Pleistocene uplift rates, decadal sediment flux from landslide occurrences and published long‐term exhumation rates from 10Be cosmogenic nuclide concentrations. Submarine channels associated with rivers delivering larger sediment fluxes have broad channels, high relief and smooth concave‐upward longitudinal profiles. Conversely, submarine channels that lie offshore small‐flux rivers have straight longitudinal profiles, low relief and steep gradients. Where river catchments supply a greater sediment flux offshore, shelves tend to be wider (ca. 400 m) and submarine channels have gentler gradients. In contrast, where catchments supply less sediment flux, shelves are narrow (250–300 m) and offshore channel gradients are steeper. The variation of submarine morphology with tectonic uplift rate was also studied, but we find that, unlike onshore terrains where tectonics is commonly an important factor influencing channel morphology, in the submarine landscapes, sediment flux appears to dominate here.  相似文献   

5.
《Basin Research》2018,30(2):321-343
This natural‐scale experimental study combines structural modelling of soft‐linked normal‐fault relays with a CFD (computational fluid dynamics) numerical simulation of a range of unconfined turbidity currents overrunning the relay‐system topography. The flow, released from an upslope inlet gate 2000‐m wide and 50‐m to 100‐m high, rapidly expands and adjusts its thickness, velocity and sediment load to the substrate slope of 1.5°. A lower initial sediment concentration or smaller thickness renders the quasi‐steady flow slower and its sediment‐transport capacity lower. A 3D pattern of large interfering Kelvin‐Helmholtz waves causes fluctuations of the local flow velocity magnitude and sediment concentration. Four zones of preferential sediment deposition are recognized: a near‐gate zone of abrupt flow expansion and self‐regulation; a flow‐transverse zone on the counter‐slope of fault footwall edges; a flow‐transverse zone at the fault‐scarp toes and a similar transverse zone near the crest of the hanging wall counter‐slopes. The sand deposited on the counter‐slope tends to be re‐entrained and fed back to the current by a secondary reverse underflow. The spatial extent and sediment accumulation capacity of depozones depend upon the released current volume. The impact of relay system on an overrunning current depends upon the fault separation distance and stage of tectonic evolution. An early‐stage relay system, with small vertical displacement and little overlap of faults, is bypassed by the current with minimum flow disturbance and no pronounced deposition. An advanced‐stage system, with greater fault displacement and overlap, gives a similar hydraulic effect as a single fault segment if the fault separation is small. If the separation is relatively large, the flow tends to be internally redirected sideways from the ramp into the hanging wall synclinal depressions. Since normal‐fault relays are common features in extensional basins, the study bears important implications for turbiditic slope‐fan models and for the spatial sand prediction in subsurface exploration of faulted submarine slopes.  相似文献   

6.
This paper presents data on the sedimentation processes and basin-fill architecture in an incipient submarine intrabasinal graben, the Strava graben. The Strava graben is a relatively small intrabasinal structure about 15 km long and 3 km wide formed some time during the late Pleistocene. It connects the Alkyonidhes basin to the Corinth basin, in the Aegean back arc, which is characterized by fast rates of extension and intensive seismicity. Analysis and interpretation of high-resolution 3.5-kHz and sparker profiles together with sonar imagery have shown that gravity-driven sediment transport, triggered by earthquakes, is the dominant sedimentation process and that this sediment forms the vast bulk of the basin-fill. The sediment deposited in the Strava graben is derived from the uplifted footwall blocks bounding the graben and is transported to the basin initially as liquefied flows, some of which may progressively evolve to turbidity flows. The deposits of the liquefied flows have accumulated in the graben floor as aggradational stacks, consisting of sheet-like, low-relief lobes, forming base of slope aprons that are fed by multiple sediment sources along active faults. In addition to the lateral (footwall-derived) sediment transport there is also a gravity-controlled axial transport. The axial transport has formed a depositional system in the down-dip termination of the Strava graben, where it enters the Corinth basin. The axial depositional system grows outwards and upwards and consists of liquefied flow depositional lobes which are separated by turbidites. The sedimentation transport processes and basin infilling style described for the Strava graben can be used as a predictive model for the early synrift stage of ancient submarine intrabasinal structures, in which the major sediment source area is the bounding fault scarps and not drainage basins in the hinterland.  相似文献   

7.
The details of how narrow, orogen‐parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through‐like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen‐parallel deep‐marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (4–8 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north‐south oriented conglomerate lenses are contemporaneous within error limits (ca. 84–82 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 87–82 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 90–82 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. Kolmogorov–Smirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen‐parallel ocean basins.  相似文献   

8.
The Calabrian-Peloritan Arc (southern Italy) represents a fragment of the European margin, thrusted onto the Apennines and Maghrebides during the Europe-Apulia collision in the late Early Miocene. A reconstruction of the pre-Middle Miocene tectono-sedimentary evolution of the southern part of the Calabrian-Peloritan Arc (CPA) is presented, based on a detailed analysis of the Stilo-Capo ?Orlando Formation (SCO Fm). Deposition of the SCO Fm occurred in a series of mixed-mode piggy-back basins. Basin evolution was controlled by two intersecting fault systems. A NW-SE oriented system delimited a series of sub-basins and fixed the position of feeder channels and submarine canyons, whereas a NE-SW oriented system controlled the axial dispersal of coarse-grained sediments within each of the sub-basins. From base to top, sedimentary environments change from terrestrial and lagoonal to upper bathyal over a timespan of approximately 12 Myr (late Early Oligocene-late Early Miocene). During this interval, extensional tectonic activity alternated with oblique backthrusting events, related to dextral transpression along the NW-SE oriented faults. This produced a characteristic pulsating pattern of basin evolution. Oligocene-Early Miocene evolution of the W. Mediterranean basin was dominated by ‘roll back’ of the Neotethyan oceanic lithosphere. Considerable extension in the overriding European Plate gave rise to the formation of a back arc-thrust system. The initial stages of Calabrian Basin evolution are remarkably similar to the evolution of rift basins in the back arc (Sardinia). The Calabrian basins, which are inferred to have originated as thin-skinned pull-apart basins, were subsequently incorporated into the Apennines-Maghrebides accretionary wedge by out-of-sequence thrusting, and became decoupled from the back arc. Periodic restabilization of the accretionary wedge, resulting in an alternation of backthrusting and listric normal faulting, provides an explanation for the structural evolution of these mixed-mode basins. The basins of the southern part of the CPA may be termed ‘spanner’ or ‘looper’ basins, in view of their characteristic pulsating structural evolution, superimposed upon their migration toward the foreland. This new term adequately accounts for the occurrence of tectonic inversions in long-lived piggy-back basins, as expected in the light of the dynamics of accretionary wedges.  相似文献   

9.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

10.
《Basin Research》2018,30(1):5-19
The Chatham Rise is located offshore of New Zealand's South Island. Vast areas of the Chatham Rise are covered in circular to elliptical seafloor depressions that appear to be forming through a bathymetrically controlled mechanism, as seafloor depressions 2–5 km in diameter are found in water depths of 800–1100 m. High‐resolution P‐Cable 3D seismic data were acquired in 2013 across one of these depressions. The seafloor depression is interpreted as a mounded contourite. Our data reveal several smaller buried depressions (<20–650 m diameter) beneath the mounded contourite that we interpret as paleo‐pockmarks. These pockmarks are underlain by a complex polygonal fault system that deforms the strata and an unusual conical feature results. We interpret the conical feature as a sediment remobilization structure based on the presence of stratified reflections within the feature, RMS amplitude values and lack of velocity anomaly that would indicate a nonsedimentary origin. The sediment remobilization structure, polygonal faults and paleo‐depressions are the indicators of the past subsurface fluid flow. We hypothesize that the pockmarks provided the necessary topographic roughness for the formation of the mounded contourites thus linking fluid expulsion and the deposition of contouritic drifts.  相似文献   

11.
Deep-water syn-rift systems develop in partially- or transiently-linked depocentres to form complicated depositional architectures, which are characterised by short transport distances, coarse grain sizes and a wide range of sedimentary processes. Exhumed systems that can help to constrain the tectono-stratigraphic evolution of such systems are rare or complicated by inversion tectonics. Here, we document a mid-Pleistocene deep-water syn-rift system fed by Gilbert-type fan deltas in the hangingwall of a rift margin fault bounding the West Xylokastro Horst block, on the southern margin of the Gulf of Corinth, Greece. Structural and stratigraphic mapping combined with digital outcrop models permit observations along this syn-rift depositional system from hinterland source to deep-water sink. The West Xylokastro Fault hangingwall is filled by two distinct sediment systems; an axial system fed by coarse-grained sediment gravity flows derived from fault-tip Gilbert-type fan deltas and a lateral system dominated by mass transport deposits fed from an evolving fault-scarp apron. Abrupt changes in stratigraphic architecture across the axial system are interpreted to record changes in relative base level, sediment supply and tectonics. Locally, depositional topography and intra-basinal structures controlled sediment dispersal patterns, from bed-scale infilling of local rugose topography above mass transport complexes, to basin-scale confinement from the fault scarp apron. These acted to generate a temporally and spatially variable, heterogeneous stratigraphic architecture throughout the basin-fill. The transition of the locus of sedimentation from a rift margin to a fault terrace through the syn-sedimentary growth of a basinward fault produced regressive surfaces updip, which manifest themselves as channels in the deep-water realm and acted to prograde the system. We present a new conceptual model that recognises coeval axial and transverse systems based on the stratigraphic architecture around the West Xylokastro fault block that emphasizes the lateral and vertical heterogeneity of rift basin-fills with multiple entry points.  相似文献   

12.
《Geomorphology》2002,42(1-2):97-116
Geological and geomorphological surveys have been performed in the area affected by the 1997–1998 Umbria–Marche seismic sequence (Mmax=6.0) aimed at defining the Quaternary tectonic history and the characteristics of the present tectonic regime. Data have been collected from: (1) the analysis of the remnant landsurfaces by means of aerial photos and field surveys; (2) geological surveys in the Cesi–San Martino basin and in the easternmost sector of the Colfiorito basin in order to identify deformative features affecting the Quaternary deposits; (3) the analysis of boreholes and geo-electrical data (derived from previous surveys performed in the 1960s) in order to reconstruct the top of the pre-Quaternary substratum in the Colfiorito basin. Two different successions of remnant landsurfaces have been identified along the faults bounding the basins to the east, in the hangingwall and the footwall, respectively. The difference accounts for a fault-controlled evolution of the landscape at least during the Upper Pliocene–Early Pleistocene. The deformation affecting the Quaternary deposits and landforms in the investigated basins indicates a decreasing tectonic activity along the master faults since the Middle Pleistocene. Surface deformation due to tectonics is faint and displayed by gentle warping of the landforms during the late Quaternary. As for the basin geometry, subsurface data show that two minor depressions formed in the Colfiorito Basin during the Quaternary, the oldest one close to the fault bounding the basin, while the youngest (and deepest) formed in the inner portion of the basin. Therefore, the present geometry is different from that of other fault-bounded Quaternary depressions of the central Apennines (typically half-graben basins), showing the maximum depth of the substratum in the area close to the master fault. Tectonic history may be summarised as follows: (1) origin of the Quaternary fault-bounded Colfiorito and Cesi–San Martino basins; (2) evolution of the basins with a half-graben style; (3) significant reduction of tectonic activity since the Middle Pleistocene. During the third phase, the evolution of the basins is no longer related to a half-graben style. In the case of the Colfiorito basin, a new depression is superimposed to on the previous half-graben whose evolution is related to the lowering of the inner portion of the basin through warping. Moreover, present activity does not result in fault-related surficial displacements but only in “continuous” deformation spread over the basins. These conclusions have fundamental implications for the seismotectonic framework of the 1997–1998 earthquake sequence. This deformation style is, indeed, in agreement with the coseismic deformation modelled by means of the SAR interferometry analyses carried out by other institutions during the seismic sequence, and with the lack of evident surface faulting related to the mentioned events in the investigated area. This evidence indicates that the evolution of the investigated area since the Middle Pleistocene resulted from the summation of deformative episodes similar to that which occurred during the recent seismic sequence. As a consequence, no earthquakes with magnitude larger than 6 are expected in the area.  相似文献   

13.
BILL Higgs 《Basin Research》1988,1(3):155-165
Abstract The Plio-Quaternary history of the Gulf of Corinth Basin has been controlled by dominantly north-south extension. The basin has an asymmetric graben geometry that is, at the present time, controlled by a master fault (the Gulf of Corinth Fault) downthrowing to the north and running offshore from the north Peloponnese coast.
Detailed structural interpretation of single-channel seismic data collected during RRS 'Shackleton' cruise 1/82 combined with onshore structural studies indicates that the basin geometry is not controlled simply by the main Gulf of Corinth Fault. The subsidence history for the uppermost 1 km of sediment can be documented using time-structure contour maps and isochron maps. These indicate that there is a general narrowing in the size of the basin with time, achieved by fault-controlled subsidence switching to antithetic faults concentrated towards the basin centre. It can also be demonstrated that growth of sediments into topographic lows is not only controlled by sea bed rupture but also by more passive sea bed flexure over 'blind' faults at depth.
The main conclusion of this study is that the 3D geometry of the Gulf of Corinth Basin changes not only spatially but also temporally. Active growth faulting and, therefore, the position of depocentres can switch across the basin and the relative importance of synthetic and antithetic faults controls the geometry of the basin, forming grabens, asymmetric grabens and half-grabens throughout the basin history.  相似文献   

14.
Faulting exerts an important control upon drainage development in active extensional basins and thus helps determine the architecture of the sedimentary infill to a synrift basin. Examples of the interaction between faulting and drainage from the western United States and central Greece may be grouped into a relatively small number of classes based upon the structural position of a drainage catchment: footwall, hangingwall, fault offset and axial. Our examples illustrate the diversity of erosional effects that might arise because of variations in the spacing, orientation and segmentation of faults and their interactions. Where basement lithology is similar, footwall catchments are generally smaller, shorter and steeper than those of the hangingwall. Footwall-sourced alluvial fans and fan deltas are: generally smaller in area than those sourced from similar lithologies in the hangingwall. Wide fault offsets often give rise to large drainage catchments in the footwall. The development of axial drainage depends upon the breaching of transverse bedrock ridges by headward stream erosion or by lake overflow. Once breaching has occurred the direction of axial stream flow is controlled by the potential developed between basins of contrasting widths. Fault migration and propagation leads to the uplift, erosion and resedimentation of the sedimentary infill to formerly active basins, leading to the cutting of footwall unconformities. The outward sediment flux from structurally controlled catchments is modulated in an important way by lithology and runoff. The greatest contrasts in basement lithology arise when fault migration and propagation have occurred, such that the sedimentary fill to previously active basins is uplifted, incised and eroded by the establishment of large new drainage systems in the footwalls of younger faults. Drainage patterns in areas where faults interact can shed light on the relative timing of activity and therefore the occurrence of fault migration and propagation. Facies and palaeocurrent trends in ancient grabens may only be correctly interpreted when observations are made on a length scale of 10–20 km, comparable to that of the largest fault segments.  相似文献   

15.
The processes and deposits of deep‐water submarine channels are known to be influenced by a wide variety of controlling factors, both allocyclic and autocyclic. However, unlike their fluvial counterparts whose dynamics are well‐studied, the factors that control the long‐term behaviour of submarine channels, particularly on slopes undergoing active deformation, remain poorly understood. We combine seismic techniques with concepts from landscape dynamics to investigate quantitatively how the growth of gravitational‐collapse structures at or near the seabed in the Niger Delta have influenced the morphology of submarine channels along their length from the shelf edge to their deep‐water counterpart. From a three dimensional (3D), time‐migrated seismic‐reflection volume, which extends over 120 km from the shelf edge to the base of slope, we mapped the present‐day geomorphic expression of two submarine channels and active structures at the seabed, and created a Digital Elevation Model (DEM). A second geomorphic surface and DEM raster—interpreted to closer approximate the most recent active channel geometries—were created through removing the thickness of hemipelagic drape across the study area. The DEM rasters were used to extract the longitudinal profiles of channel systems with seabed expression, and we evaluate the evolution of channel widths, depths and slopes at fixed intervals downslope as the channels interact with growing structures. Results show that the channel long profiles have a relatively linear form with localized steepening associated with seabed structures. We demonstrate that channel morphologies and their constituent architectural elements are sensitive to active seafloor deformation, and we use the geomorphic data to infer a likely distribution of bed shear stresses and flow velocities from the shelf edge to deep water. Our results give new insights into the erosional dynamics of submarine channels, allow us to quantify the extent to which submarine channels can keep pace with growing structures, and help us to constrain the delivery and distribution of sediment to deep‐water settings.  相似文献   

16.
World-class examples of fault-controlled growth basins with associated syn-kinematic sedimentary fill are developed in Upper Triassic prodelta to delta-front deposits exposed at Kvalpynten, SW Edgeøya in East Svalbard. They are interpreted to have interacted with north-westerly progradation of a regional delta system. The syn-kinematic successions consist of 4 to 5 coarsening-upward units spanning from offshore mudstones to subtidal heterolithic bars and compound tidal dunes, which were blanketed by regional, post-kinematic sandstone sheets deposited as laterally continuous, subaqueous tidal dune fields. The rate of growth faulting is reflected in the distribution of accommodation, which governs sedimentary architecture and stacking patterns within the coarsening-upward units. Fully compartmentalized basins (12, 200–800 m wide and c. 150 m high grabens and half grabens) are characterized by syn-kinematic sedimentary infill. These grabens and half-grabens are separated by 60–150 m high horsts composed of pro-delta to distal delta-front mudstones. Grabens host tabular tidal dunes (sandwaves), whereas half-grabens bound by listric faults (mainly south-dipping) consist of wedge-shaped, rotated strata with erosive boundaries proximal to the uplifted fault block crests. Heterolithic tidal bars (sand ridges) occur in narrow half-grabens, showing migration oblique to the faults, up the dipslope. Structureless sandstone wedges and localized subaqueous slumps that formed in response to collapse of the block crests were only documented in half-grabens. Late-kinematic deposition during the final stages of faulting occurred in partly compartmentalized basins, filled with variably thick sets of continuous sandstone belts (compound tidal dunes).  相似文献   

17.
Thermokarst landforms and processes in Ares Vallis, Mars   总被引:1,自引:0,他引:1  
With a length of 1500 km, Ares Vallis is one of the largest martian outflow channels, and is inferred to have been formed by cataclysmic floods of water conveyed from source areas, which are marked by chaotic terrain, to Chryse Planitia. Near its downstream outlet (14°N, 28°W), the floor of Ares widens to 100 km from its average 25 km width. This area of widened channel floor is marked by a complex of irregular terraces, elongated depressions, linear ridges, sinuous ridges, and other indicators of highly irregular dissection of a formerly continuous surface. Thermokarst processes, following either glacial or alluvial histories, seem best to explain these relationships. Various indicators of fluctuating discharge for water and sediment, ponding of debris, and prolonged flow suggest the emplacement of ice-rich debris in the anomalous reach of Ares Vallis. Post-flood or post-glacial thawing of the ice-rich sediments would then generate the thermokarst landscape. These processes, which are consistent with other indicators of anomalously warm climatic conditions, imply a profound change from the modern martian environment.  相似文献   

18.
In submarine settings, the growth of structurally influenced topography can play a decisive role in controlling the routing of sediments from shelf-edge to deep water, and can determine depositional architectures and sediment characteristics. Here we use well-constrained examples from the deep water Niger Delta, where gravity-driven deformation has resulted in the development of a large fold and thrust belt, to illustrate how spatial and temporal variations in the rate of deformation have controlled the nature and locus of contrasting depositional styles. Published work in the study area using 3D seismic data has quantified the growth history of the thrust-related folds at multiple locations using line-length-balancing, enabling cumulative strain for individual structures over time and along-strike to be obtained. We integrate this information with seismic interpretation and facies analysis, focusing on the interval of maximum deformation (15 to 3.7 Ma), where maximum strain rates reached 7%/Ma. Within this interval, we observe a vertical change in depositional architecture where: (1) leveed-confined and linear channels pass upward in to (2) ponded lobes with erosionally confined channels and finally (3) channelised sheets. Our analysis demonstrate that this change is tectonically induced and diachronous across the fault array, and we characterise the extent to which structural growth controls both the distribution and the architecture of the turbidite deposits in such settings. In particular, we show that leveed-confined channels exist when they can exploit strain minima between growing faults or at their lateral tips. Conversely, as a result of fault linkage and increased strain rates submarine channels become erosional and may be forced to cross folds at their strain maxima (crests), where their pathways are influenced by across-strike variations in shortening for individual structures. Our results enable us to propose new conceptual models of submarine channel deposition in structurally complex margins, and provide new insights into the magnitude of fault interaction needed to alter depositional style from leveed to erosionally confined channels, or to deflect seabed systems around growing structures.  相似文献   

19.
20.
We investigate the evolution of passive continental margin sedimentary basins that contain salt through two‐dimensional (2D) analytical failure analysis and plane‐strain finite‐element modelling. We expand an earlier analytical failure analysis of a sedimentary basin/salt system at a passive continental margin to include the effects of submarine water loading and pore fluid pressure. Seaward thinning sediments above a weak salt layer produce a pressure gradient that induces Poiseuille flow in the viscous salt. We determine the circumstances under which failure at the head and toe of the frictional–plastic sediment wedge occurs, resulting in translation of the wedge, landward extension and seaward contraction, accompanied by Couette flow in the underlying salt. The effects of water: (i) increase solid and fluid pressures in the sediments; (ii) reduce the head to toe differential pressure in the salt and (iii) act as a buttress to oppose failure and translation of the sediment wedge. The magnitude of the translation velocity upon failure is reduced by the effects of water. The subsequent deformation is investigated using a 2D finite‐element model that includes the effects of the submarine setting and hydrostatic pore pressures. The model quantitatively simulates a 2D approximation of the evolution of natural sedimentary basins on continental margins that are formed above salt. Sediment progradation above a viscous salt layer results in formation of landward extensional basins and listric normal growth faults as well as seaward contraction. At a later stage, an allochthonous salt nappe overthrusts the autochthonous limit of the salt. The nature and distribution of major structures depends on the sediment properties and the sedimentation pattern. Strain weakening of sediment favours landward listric growth faults with formation of asymmetric extensional depocentres. Episodes of low sediment influx, with partial infill of depocentres, produce local pressure gradients in the salt that result in diapirism. Diapirs grow passively during sediment aggradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号