首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Amino acids and α-hydroxy acids are well known constituents of several carbonaceous meteorites. One proposed mechanism of their formation is the reactions of CN, NH3, aldehydes and ketones in aqueous solution, a Strecker-like synthesis. Iminodicarboxylic acids, relatively unusual in molecular structure, are significant by-products of laboratory Strecker syntheses of α-amino acids. It is therefore notable that an analogous suite of imino acids has not been reported in CM2 chondrites where amino and hydroxy acids are abundant. In this work, aqueous extracts of the Murchison meteorite were examined for the presence of imino acids; GC-MS and HPLC molecular analyses revealed a complex suite of such acids. With the exception of one of the seven-carbon members, all of the C4 through C7 imino acids were observed in Murchison. These observations suggest that the Strecker synthesis made, at least, some contribution to the formation of extraterrestrial amino acids.  相似文献   

2.
A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100 degrees C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100 degrees C (alanine, valine, leucine, isoleucine, norleucine, aspartic acid, glutamic acid and glycine). The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. Ratios of the concentration of serine to those of glycine are also constant but cannot be accounted for solely by relative solubilities, and, as suggested elsewhere, serine as well as phenylalanine and methionine may be terrestrial contaminants. Data for beta-alanine, alpha-aminobutyric acid, proline, sarcosine, alloisoleucine, beta-aminoisobutyric acid, beta-aminobutyric acid, and threonine also show constant abundances relative to glycine, but lack of solubility data at extraction conditions prohibits evaluating the extent of possible sampling bias for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of sampling bias needs to be tested experimentally before concluding that extraction is complete, and that the constant relative abundances indicate that the relative concentrations of amino acids are homogeneous in the meteorite.  相似文献   

3.
The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen. The latter finding would not be expected if both classes of compounds came exclusively from common precursors as would have been the case for a Strecker synthesis.  相似文献   

4.
Deuterium-enriched amino acids occur in the Murchison carbonaceous chrondrite. This meteorite underwent a period of aqueous alteration with isotopically light water. With the objective of setting limits on the conditions of aqueous alteration, the exchange of the carbon-bonded hydrogen atoms of amino acids with D2O has been studied from 295 to 380 K as a function of time and meteorite/heavy water ratio. The amount of Murchison or Allende dust present has a significant effect on the rate and amount of hydrogen-deuterium exchange observed. At elevated temperatures, the alpha-hydrogens of all the amino acids studied were found to exchange with deuterium. In glycine and aspartic acid, this process resulted in total exchange of the carbon-bonded hydrogen. A completely deuterated isotopomer of alanine was produced in significant quantities only when the rock/water ratio was greater than 0.5. No exchange of carbon-bonded hydrogens was observed in the case of amino acids which do not possess an alpha-hydrogen atom. The rates of H/D exchange for amino acids observed here did not correspond to deuterium enrichment of the amino acids in the Murchison meteorite. These results suggest that H/D exchange with water had a negligible effect on the observed deuterium enrichment of amino acids found in Murchison and that the temperature at which the amino acids were exposed to liquid water was close to 273 K.  相似文献   

5.
The concentration of eight protein amino acids found in extracts of the Murchison carbonaceous chondrite has been measured by quadrupole mass fragmentography. This result was obtained by using deuterated amino acids as internal standards. In addition, hydrogendeuterium exchange in amino acids was studied by two methods. First, nondeuterated amino acids were added to the meteorite and the amount of deuterium incorporated after extraction with deuterium oxide was determined. Second, deuterated amino acids were added to the dry meteorite and the loss of deuterium after extraction with H2O was measured. It was observed that the degree of hydrogen-deuterium exchange increased with increasing severity of extraction conditions. This exchange resulted in some racemization, presumably catalyzed by constituents of the meteorite. The degree of racemization for each amino acid was determined by gas chromatography of the corresponding N-trifluoroacetyl-O-( + )-2-butyl esters.  相似文献   

6.
All ten of the possible five-carbon acyclic primary β-, γ-, and δ-amino alkanoic acids (amino position isomers of the valines) have been positively identified in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. With the exception of δ-aminovaleric acid, none of these amino acids has been previously reported to occur in meteorites or in any other natural material. The γ-amino acids (4-aminopentanoic acid, 4-aminc-2-meth-ylbutanoic acid, and 4-amino-3-methylbutanoic acid) are present at higher concentrations (about 5 nmol g?1) than are the β-amino isomers (3-aminopentanoic acid, 3-amino-2-methylbutanoic acid, allo-3-amino-2-methylbutanoic acid, 3-amino-3-methylbutanoic acid, 3-amino-2-ethylpropanoic acid, and 3-amino-2,2-dimethylpropanoic acid) which are present at concentrations of 1–2 nmol g?1. These amino acids are less abundant in the meteorite than either the corresponding α-amino acids or the four-carbon homologues. Thirty-six amino acids have now been positively identified in the Murchison meteorite, 17 of which are apparently unique to carbonaceous chondrites. The fact that the meteorite contains all possible five-carbon acyclic primary α-, β-, γ-, and δ-amino alkanoic acids is consistent with a synthetic process involving random combination of single-carbon precursors.  相似文献   

7.
The δ13C values of thirty-four individual amino acids and two pyridine carboxylic acids have been obtained fromthe Murchison meteorite. They were found to range from +4.9 to +52.8‰, with statistically significant differences observed both within and between amino acid subgroups. The 13C content of α-amino acids declines with increasing chain length, a trend similar to the ones previously observed for carboxylic acids and alkanes. Also 2-methyl-2-amino acids were found to be heavier in 13C than the corresponding 2-H homologues. The3-, 4-, and 5-amino acids do not show a comparable declining trend in δ13C values and neither do the amino dicarboxylic acids. This variability in δ 13C values can be interpreted as to indicate that the synthetic histories of soluble organics in meteorites may have been diverse even within groups of compounds with very similar functional group composition.  相似文献   

8.
Amino acids in the Murchison meteorite   总被引:1,自引:0,他引:1  
Continued investigation of the Murchison meteorite by gas chromatography combined with mass spectrometry has led to the characterization of at least 17 amino acids in addition to the 18 identified in earlier work. The total population consists of a wide variety of linear and cyclic difunctional and polyfunctional amino acids, of which the linear difunctional amino acids show a general decrease in concentration as the number of carbon atoms in the amino acid molecule increases. These results are consistent with the hypothesis that the amino acids are present as the result of an extraterrestrial, abiotic synthesis.  相似文献   

9.
The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising l-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. 13C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest δD value (+3450‰) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios.  相似文献   

10.
A detailed study has been made of the solvent extractable monocarboxylic, dicarboxylic and hydroxylated fatty acids and n-alkanes in a surface intertidal sediment, and the distributions compared to microorganisms cultured from the sediment. Diatoms are shown to contribute most of the monocarboxylic acids, particularly the significant amounts of polyunsaturated acids present, and a small proportion of the n-alkanes. Bacteria contribute between 11 and 14% of the monocarboxylic acids and markers for this, including trans-monounsaturated acids, are proposed. Detritus from the sea-grass Zostera muelleri is a major source of the α-hydroxy-, ω-hydroxy and α,ω-dicarboxylic acids in the sediment and a minor contributor of n-alkanes and long-chain fatty acids.  相似文献   

11.
采用一系列温和的化学降解法对松辽盆地南部嫩江组烃源岩的干酪根进行连续的选择性化学降解,并对不同降解产物进行色谱—同位素比值质谱分析。研究表明碱性水解和脱硫产物以一元脂肪酸和正构烷烃为主,其中正构烷烃碳同位素分布曲线呈现一定的“负倾”(即随碳数增加呈现逐渐贫13C)趋势;一元脂肪酸以C16和C18为主,具有明显的偶碳优势,与同碳数的正构烷烃具有相似的碳同位素组成。氧化产物则以一元脂肪酸和α,ω 二元脂肪酸为主,一元脂肪酸低碳数部分呈现“负倾”趋势,高碳数部分则呈现“正倾”的趋势;α,ω 二元脂肪酸与低碳数的一元脂肪酸具有相似的分布,表明它们可能具有相同的母源。对比研究表明JL 30抽提物中正构烷烃可能存在混源的影响,其碳同位素组成是多源混合的结果。  相似文献   

12.
Alkaline potassium permanganate oxidation of a young kerogen (lacustrine) and 34 model compounds (saturated and unsaturated fatty acids, hydroxy acid, aliphatic dicarboxylic acids, aliphatic alcohols, normal hydrocarbon, β-carotene, phenolic acids, benzenecarboxylic acids, carbohydrates, amino acids and proteins) were conducted, followed by GC and GC-MS analysis of the degradation products. The stability of the degradation products of kerogen in permanganate solution and the relationship between degradation products and kerogen building blocks were determined.The results showed that aliphatic acids C12–C16 monocarboxylic acids and C6–C10 α,ω-dicarboxylic acids) were rather susceptible to oxidation compared with benzenecarboxylic acids and the former were degraded into lower molecular weight decarboxylic acids. It was concluded that oxidation at milder conditions (60° C, 1 hr) is appropriate for qualitative and quantitative characterization of the aliphatic structure of young kerogen. It was noteworthy that benzoic acid was produced in a significant amount by oxidation of amino acids (phenylalanine) and proteins, C18-isoprenoidal ketone from phytol, and C8 and C9 α,ω-dicarboxylic acids from unsaturated fatty acids, respectively; furthermore, 2,2-dimethyl succinic and 2,2-dimethyl glutaric acids were produced from β-carotene.  相似文献   

13.
The enantiomeric excesses determined for eight amino acids and one hydroxy acid of carbonaceous chondrite meteorites represent to date the only case of molecular asymmetry measured outside the biosphere. Because of the chiral homogeneity of life’s structures and functions, the findings have been debated for the possible relevance that a-biotic chiral symmetry-breaking might have had in the origin of terrestrial homochirality. While the many unknowns surrounding the origin of life have inevitably hindered the inquiries raised in this discourse, the hypotheses put forward in regard to the origin of extraterrestrial chiral asymmetry, which is a defined physico-chemical phenomenon, have been approached analytically and their scrutiny has aided the understanding of pre-biotic chemical evolution. We report here on our current knowledge of the asymmetric effects that could have influenced the chiral symmetry breaking of molecules in cosmochemical environments and how they correlate with the data obtained from meteorite analyses. We also address recent proposals that aqueous processes might have influenced the chirality of amino acids in meteorites and show that the crystallization behavior of isovaline, the most abundant non-racemic amino acid in the Murchison meteorite, excludes its attainment of enantiomeric excesses via phase changes such as crystallization or sublimation.  相似文献   

14.
Small (1.0-9.2%) L-enantiomer excesses were found in six alpha-methyl-alpha-amino alkanoic acids from the Murchison (2.8-9.2%) and Murray (1.0-6.0%) carbonaceous chondrites by gas chromatography-mass spectroscopy of their N-trifluoroacetyl or N-pentafluoropropyl isopropyl esters. These amino acids [2-amino-2,3-dimethylpentanoic acid (both diastereomers), isovaline, alpha-methyl norvaline, alpha-methyl valine, and alpha-methyl norleucine] are either unknown or rare in the terrestrial biosphere. Enantiomeric excesses were either not observed in the four alpha-H-alpha-amino alkanoic acids analyzed (alpha-amino-n-butyric acid, norvaline, alanine, and valine) or were attributed to terrestrial contamination. The substantial excess of L-alanine reported by others was not found in the alanine in fractionated extracts of either meteorite. The enantiomeric excesses reported for the alpha-methyl amino acids may be the result of partial photoresolution of racemic mixtures caused by ultraviolet circularly polarized light in the presolar cloud. The alpha-methyl-alpha-amino alkanoic acids could have been significant in the origin of terrestrial homochirality given their resistance to racemization and the possibility for amplification of their enantiomeric excesses suggested by the strong tendency of their polymers to form chiral secondary structure.  相似文献   

15.
泥岩有水热解产生低分子量有机酸实验研究   总被引:1,自引:0,他引:1  
直接采用泥岩岩屑进行有水热解,测定实验后水溶液中几种常见低分子量有机酸.结果表明,在实验的水溶液中检测到了丰富的低分子量有机酸,组成上主要为一元羧酸,其中又以乙酸占优势.讨论了不同热解条件对有机酸产率以及组成的影响.实验结果表明,有机酸总量随加热温度和时间增加而增加,并且溶液中不同有机酸相对组成也发生变化.当温度高于1...  相似文献   

16.
The δD values of over 40 amino acids and two pyridine carboxylic acids of the Murchison and Murray meteorites have been obtained by compound-specific isotopic analyses. For compounds with no known terrestrial distribution, these values range from approximately +330 (for cyclic leucine) to +3600 (for 2-amino-2,3-dimethylbutyric acid). The latter value is the highest ever recorded for a soluble organic compound in meteorites and nears deuterium to hydrogen ratios observed remotely in interstellar molecules. Deuterium content varies significantly between molecular species and is markedly higher for amino acids having a branched alkyl chain. The δD value of Murray l-isovaline, with an enantiomeric excess of ∼ 6% in the meteorite, was within experimental error of that determined for the combined dl-isovaline enantiomers. Overall, the hydrogen isotope composition of meteoritic amino acids is relatively simple and their δD values appear to vary more with the structure of their carbon chains than with the number and relative distribution of their functionalities or 13C content. The magnitude and extent of deuterium enrichment shared by many and varied amino acids in meteorites indicate that cosmic regimes such as those found in the interstellar medium were capable of producing, if not all the amino acids directly, at least a suite of their direct precursors that was abundant, varied, and considerably saturated.  相似文献   

17.
Organic acids and acid anions occur in substantial concentrations in many aqueous geologic fluids and are thought to take part in a variety of geochemical processes ranging from the transport of metals in ore-forming fluids to the formation of natural gas to serving as a metabolic energy source for microbes in subsurface habitats. The widespread occurrence of organic acids and their potential role in diverse geologic processes has led to numerous experimental studies of their thermal stability, yet there remain substantial gaps in our knowledge of the factors that control the rates and reaction pathways for the decomposition of these compounds under geologic conditions. In order to address some of these uncertainties, a series of laboratory experiments were conducted to examine the behavior of organic acids and acid anions under hydrothermal conditions in the presence of minerals. Reported here are results of experiments where aqueous solutions of acetic acid, sodium acetate, or valeric acid (n-pentanoic acid) were heated at 325°C, 350 bars in the presence of the mineral assemblages hematite + magnetite + pyrite, pyrite + pyrrhotite + magnetite, and hematite + magnetite. The results indicate that aqueous acetic acid and acetate decompose by a combination of two reaction pathways: decarboxylation and oxidation. Both reactions are promoted by minerals, with hematite catalyzing the oxidation reaction while magnetite catalyzes decarboxylation. The oxidation reaction is much faster, so that oxidation dominates the decomposition of acetic acid and acetate when hematite is present. In contrast to previous reports that acetate decomposed more slowly than acetic acid, we found that acetate decomposed at slightly faster rates than the acid in the presence of minerals. Although longer-chain monocarboxylic acids are generally thought to decompose by decarboxylation, valeric acid appeared to decompose primarily by “deformylation” to 1-butene plus formic acid. Subsequent decomposition of 1-butene and formic acid generated a variety of short-chain (≤C4) hydrocarbons and moncarboxylic acids as well as CO2. Valeric acid decomposition proceeded more rapidly (by a factor of 2) in the presence of hematite-magnetite-pyrite than with the other mineral assemblages, with the greater reaction rate apparently attributable to the effects of fluid chemistry. Valeric acid was observed to decompose at a substantially faster rate than acetic acid under similar conditions. The results suggest that decomposition of aqueous monocarboxylic acids may make a significant contribution to the conversion of petroleum to light hydrocarbons in natural gas and thermal fluids.  相似文献   

18.
The occurrence and distribution of low molecular weight α-hydroxy carboxylic and dicarboxylic acids was studied in reducing marine sediments collected in the Santa Barbara Basin and the Cariaco Trench. Four compounds were found to occur in both basin sediments: glycolic, lactic, oxalic and succinic acids. In general concentrations were low (? 1 μmol/g for the hydroxy acids and ? 100μmol/g for the dicarboxylic acids), and generally decreased with depth. Subsurface maxima were observed for lactate and succinate in the Santa Barbara Basin. Both the vertical profiles and lactate enantiomer ratios suggested microbial origin and control for the distribution of these compounds. A preliminary model for the microbial mediation of the early diagenesis of organic compounds in reducing marine sediments is presented.  相似文献   

19.
Five surface sediment samples (0–3 cm), two suspended sediment samples and a zooplankton sample from Lake Ontario were analysed for nitrogen-containing compounds. Amino acids, amino sugars, ethanolamine and urea were separated and characterized by ion-exchange chromatography. Free amino acids and soluble combined amino acids and amino sugars accounted for less than 0–25 per cent of the total nitrogen in the sediments. Insoluble combined amino acids and amino sugars were the most abundant nitrogen fraction in the sediments, making up from 49 to 55 per cent of the total nitrogen. Evidence is presented that asparagine, glutamine and citrulline are present in the interstitial waters and may make up part of the sediment organic nitrogen that was not characterized.The free amino acids released by the proteolytic enzyme, pronase, from the interstitial waters and sediment humic and fulvic acid extracts were determined. Pronase released 65 per cent of the soluble combined amino acids and 34 per cent of the fulvic acid amino acids as free amino acids. Enzyme activity was inhibited in the presence of the humic acid extract. The results indicate that the combined amino acids in the interstitial waters and fulvic acid extracts are intermediates between the primary aquatic detritus and the sediment humic acids. The enzyme experiments and infra-red data indicate that part of the sediment amino acids are combined through peptide linkages.  相似文献   

20.
Low molecular weight monocarboxylic acids are the most abundant water soluble organic compounds in the Murchison and many other CM type carbonaceous chondrites. In this study, we examined the monocarboxylic acids in Murchison and EET96029.20 carbonaceous meteorites using a new sample preparation and introduction technique for gas chromatograph recently developed for volatile, water-soluble organic compounds: solid phase micro-extraction (SPME). We identified more than 50 monocarboxylic acids from Murchison compared with the 18 compounds reported previously. Formic acid, a known interstellar molecule, has been fully analyzed in these carbonaceous meteorites, with its δD value suggesting an interstellar origin. We determined both carbon and hydrogen isotopic ratios of individual monocarboxylic acids in Murchison, to better define the origins and genetic relationships of these compounds. The compound-specific isotopic data reveal a large enrichment in 13C (δ13C up to + 32.5) and particularly D (δD up to + 2024). The branched acids are substantially enriched in both 13C and D relative to the straight chain acids, with those branched acids containing a quaternary carbon showing the greatest isotopic enrichment. The isotopic difference may be attributed to variations in the different synthetic regimes or terrestrial input of straight chain acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号