首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large cokriging systems arise in many situations and are difficult to handle in practice. Simplifications such as simple kriging, strictly collocated and multicollocated cokriging are often used and models under which such simplifications are, in fact, equivalent to cokriging have recently received attention. In this paper, a two-dimensional second-order stationary random process with known mean is considered and the redundancy of certain components of the data at certain locations vis-à-vis the solution to the simple cokriging system is examined. Conditions for the simple cokriging weights of these components at these locations are set to zero. The conditions generalise the notion of the autokrigeability coefficient and can, in principle, be applied to any data configuration. In specific sampling situations such as the isotopic and certain heterotropic configurations, models under which simple kriging, strictly collocated, multicollocated and dislocated cokriging are equivalent to simple cokriging are readily identified and results already available in the literature are obtained. These are readily identified and the results are already available in the literature. The advantage of the approach presented here is that it can be applied to any data configuration for analysis of permissible simplifications in simple cokriging.  相似文献   

2.
Which Models for Collocated Cokriging?   总被引:1,自引:0,他引:1  
When a target variable is sparsely sampled, compared to a densely sampled auxiliary variable, cokriging requires simplifications. In its strict sense, collocated cokriging makes use of the auxiliary variable only at the current point where the target variable is to be estimated; in the multicollocated form, it also makes use of the auxiliary variable at all points where the target variable is available. This paper looks for the models that support these collocated cokrigings, i.e., the models in which the simplification resulting from the collocated forms does not result in any loss of information. In these models, the cross-structure between the two variables is shown to be proportional to the structure of the auxiliary variable, not to the structure of the target variable as is often assumed (except, of course, when all structures are proportional). The target variable depends on the auxiliary variable and on a spatially uncorrelated residual. Collocated cokriging simplifies to the simple method, which consists in kriging this residual. The strictly collocated cokriging corresponds to the particular case where the residual has a pure nugget structure, but it is then reduced to the single regression at the target point. Except for this trivial case, there are no models in which strictly collocated cokriging is exactly a cokriging.  相似文献   

3.
Ordinary Cokriging Revisited   总被引:12,自引:0,他引:12  
This paper sets up the relations between simple cokriging and ordinary cokriging with one or several unbiasedness constraints. Differences between cokriging variants are related to differences between models adopted for the means of primary and secondary variables. Because it is not necessary for the secondary data weights to sum to zero, ordinary cokriging with a single unbiasedness constraint gives a larger weight to the secondary information while reducing the occurrence of negative weights. Also the weights provided by such cokriging systems written in terms of covariances or correlograms are not related linearly, hence the estimates are different. The prediction performances of cokriging estimators are assessed using an environmental dataset that includes concentrations of five heavy metals at 359 locations. Analysis of reestimation scores at 100 test locations shows that kriging and cokriging perform equally when the primary and secondary variables are sampled at the same locations. When the secondary information is available at the estimated location, one gains little by retaining other distant secondary data in the estimation.  相似文献   

4.
This paper sets up the relations between simple cokriging and ordinary cokriging with one or several unbiasedness constraints. Differences between cokriging variants are related to differences between models adopted for the means of primary and secondary variables. Because it is not necessary for the secondary data weights to sum to zero, ordinary cokriging with a single unbiasedness constraint gives a larger weight to the secondary information while reducing the occurrence of negative weights. Also the weights provided by such cokriging systems written in terms of covariances or correlograms are not related linearly, hence the estimates are different. The prediction performances of cokriging estimators are assessed using an environmental dataset that includes concentrations of five heavy metals at 359 locations. Analysis of reestimation scores at 100 test locations shows that kriging and cokriging perform equally when the primary and secondary variables are sampled at the same locations. When the secondary information is available at the estimated location, one gains little by retaining other distant secondary data in the estimation.  相似文献   

5.
There exist many secondary data that must be considered in in reservoir characterization for resource assessment and performance forecasting. These include multiple seismic attributes, geological trends and structural controls. It is essential that all secondary data be accounted for with the precision warranted by that data type. Cokriging is the standard technique in geostatistics to account for multiple data types. The most common variant of cokriging in petroleum geostatistics is collocated cokriging. Implementations of collocated cokriging are often limited to a single secondary variable. Practitioners often choose the most correlated or most relevant secondary variable. Improved models would be constructed if multiple variables were accounted for simultaneously. This paper presents a novel approach to (1) merge all secondary data into a single super secondary variable, then (2) implement collocated cokriging with the single variable. The preprocessing step is straightforward and no major changes are required in the standard implementation of collocated cokriging. The theoretical validity of this approach is proven, that is, the results are proven to be identical to a “full” approach using all multiple secondary variables simultaneously.  相似文献   

6.
Three approaches for estimating the hydraulic conductivity (K) of the Trifa aquifer, Morocco were investigated: (1) kriging of the K values obtained from pumping tests, (2) cokriging of the pumping test data with electrical resistivity data as a secondary variable, and (3) cokriging of the pumping test data with the slope of the water table. Gauss-transformed values of the variables are used because they provide more robust variograms and transformed values of the primary and secondary variables show correlations higher than the raw values, which is beneficial in cokriging. In cokriging with electrical resistivity, two zones are considered since the geological deposits are different from the north to the south of the aquifer, which is reflected in different correlations between the variables. Comparison of the three approaches is based mainly on the estimation errors, and to a lesser degree on the cross-validations of the corresponding variogram models and general considerations, like the measurements’ reliability and aquifer make-up. The best-estimated K is given by cokriging with the slope of the water table and is therefore preferred for further use in groundwater flow modeling. Thus, electrical resistivity or the slope of the water table can both be used as secondary variables to estimate K, especially in heterogeneous aquifers with lateral variations in lithology, as is the case of the Trifa aquifer.  相似文献   

7.
Comparison of approaches to spatial estimation in a bivariate context   总被引:6,自引:0,他引:6  
The problem of estimating a regionalized variable in the presence of other secondary variables is encountered in spatial investigations. Given a context in which the secondary variable is known everywhere (or can be estimated with great precision), different estimation methods are compared: regression, regression with residual simple kriging, kriging, simple kriging with a mean obtained by regression, kriging with an external drift, and cokriging. The study focuses on 19 pairs of regionalized variables from five different datasets representing different domains (geochemical, environmental, geotechnical). The methods are compared by cross-validation using the mean absolute error as criterion. For correlations between the principal and secondary variable under 0.4, similar results are obtained using kriging and cokriging, and these methods are superior slightly to the other approaches in terms of minimizing estimation error. For correlations greater than 0.4, cokriging generally performs better than other methods, with a reduction in mean absolute errors that can reach 46% when there is a high degree of correlation between the variables. Kriging with an external drift or kriging the residuals of a regression (SKR) are almost as precise as cokriging.  相似文献   

8.
Multivariable spatial prediction   总被引:1,自引:0,他引:1  
For spatial prediction, it has been usual to predict one variable at a time, with the predictor using data from the same type of variable (kriging) or using additional data from auxiliary variables (cokriging). Optimal predictors can be expressed in terms of covariance functions or variograms. In earth science applications, it is often desirable to predict the joint spatial abundance of variables. A review of cokriging shows that a new cross-variogram allows optimal prediction without any symmetry condition on the covariance function. A bivariate model shows that cokriging with previously used cross-variograms can result in inferior prediction. The simultaneous spatial prediction of several variables, based on the new cross-variogram, is then developed. Multivariable spatial prediction yields the mean-squared prediction error matrix, and so allows the construction of multivariate prediction regions. Relationships between cross-variograms, between single-variable and multivariable spatial prediction, and between generalized least squares estimation and spatial prediction are also given.  相似文献   

9.
This paper compares the performance of four algorithms (full indicator cokriging. adjacent cutoffs indicator cokriging, multiple indicator kriging, median indicator kriging) for modeling conditional cumulative distribution functions (ccdf).The latter three algorithms are approximations to the theoretically better full indicator cokriging in the sense that they disregard cross-covariances between some indicator variables or they consider that all covariances are proportional to the same function. Comparative performance is assessed using a reference soil data set that includes 2649 locations at which both topsoil copper and cobalt were measured. For all practical purposes, indicator cokriging does not perform better than the other simpler algorithms which involve less variogram modeling effort and smaller computational cost. Furthermore, the number of order relation deviations is found to be higher for cokriging algorithms, especially when constraints on the kriging weights are applied.  相似文献   

10.
Many applications are multivariate in character and call for stochastic images of the joint spatial variability of multiple variables conditioned by a prior model of covariances and cross- covariances. This paper presents an algorithm to perform cosimulation of such spatially intercorrelated variables. This new algorithm builds on a Markov-type hypothesis whereby collocated information screens further away data of the same type, allowing cosimulation without the burden of a full cokriging. The proposed algorithm is checked against a synthetic multi-Gaussian reference dataset, then against a multi-Gaussian cosimulation approach using full cokriging. The results indicate that the proposed algorithm perform as well as the full cokriging approach in reproducing the univariate and bivariate statistics of the reference set, yet at less cpu cost.  相似文献   

11.
Cellular Automata (CA) simulation models have been increasingly used in land use studies. However, neighborhood configuration, an essential element of CA model, remarkably impacts the accuracy of simulated results. Moreover, errors from data source may propagate through the CA modeling process. The objective of this study is to analyze the effect of neighborhood configuration to CA model and further on to explore its capacity of resisting disturbance from data source error. With statistic-based CA model and several neighborhood configurations respectively, the land use changes of Wuhan, China were analyzed. It is demonstrated that there are significant differences on the simulated results produced by different neighborhoods. Besides, different neighborhoods respond differently to data source error. In light of these results, we find out that (1) neighborhood configurations with larger neighborhood size and planar neighborhood type, introduced in this paper, contribute to higher prediction accuracy; and (2) the neighborhood configurations above also have higher capacity of resisting disturbance from data source error and give rise to more stable simulated results. This study provides a comprehensive basis for scale selection of CA model with a meaningful consideration of data source error and thus will improve the research on land use change.  相似文献   

12.
Joint Consistent Mapping of High-Dimensional Geochemical Surveys   总被引:1,自引:0,他引:1  
Geochemical surveys often contain several tens of components, obtained from different horizons and with different analytical techniques. These are used either to obtain elemental concentration maps or to explore links between the variables. The first task involves interpolation, the second task principal component analysis (PCA) or a related technique. Interpolation of all geochemical variables (in wt% or ppm) should guarantee consistent results: At any location, all variables must be positive and sum up to 100 %. This is not ensured by any conventional geostatistical technique. Moreover, the maps should ideally preserve any link present in the data. PCA also presents some problems, derived from the spatial dependence between the observations, and the compositional nature of the data. Log-ratio geostatistical techniques offer a consistent solution to all these problems. Variation-variograms are introduced to capture the spatial dependence structure: These are direct variograms of all possible log ratios of two components. They can be modeled with a function analogous to the linear model of coregionalization (LMC), where for each spatial structure there is an associated variation matrix describing the links between the components. Eigenvalue decompositions of these matrices provide a PCA of that particular spatial scale. The whole data set can then be interpolated by cokriging. Factorial cokriging can also be used to map a certain spatial structure, eventually projected onto those principal components (PCs) of that structure with relevant contribution to the spatial variability. If only one PC is used for a certain structure, the maps obtained represent the spatial variability of a geochemical link between the variables. These procedures and their advantages are illustrated with the horizon C Kola data set, with 25 components and 605 samples covering most of the Kola peninsula (Finland, Norway, Russia).  相似文献   

13.
This paper presents a regionalized method for the estimation of a favorability function through generalization of all relevant variables (explanatory and target) into random functions. The new method allows the use of cross-covariance functions in addition to ordinary covariances for extracting spatial joint information, which is virtually overlooked in the conventional analyses. The optimal weights for a favorability equation are derived from solving a generalized eigen-system established by the maximization of covariances between a favorability function and the principal components of a set of pre-selected target variables. Various correlation coefficients may be computed to assist in interpretation of the favorability estimates. Both favorability functions and correlation coefficients may be estimated for a point or a block. The regionalized favorability theory can be compared to cokriging in that both use the sample-sample covariances to account for the sample-sample relations and the point-sample covariances to account for the point-sample configurations. The new technique is demonstrated on a test case study, which involves the integration of geochemical, airborne-geophysical, and structural data sets for the target selection of hydrothermal gold-silver deposits.  相似文献   

14.
Information on the spatial distribution of soil particle-size fractions (psf) is required for a wide range of applications. Geostatistics is often used to map spatial distribution from point observations; however, for compositional data such as soil psf, conventional multivariate geostatistics are not optimal. Several solutions have been proposed, including compositional kriging and transformation to a composition followed by cokriging. These have been shown to perform differently in different situations, so that there is no procedure to choose an optimal method. To address this, two case studies of soil psf mapping were carried out using compositional kriging, log-ratio cokriging, cokriging, and additive log-ratio cokriging; and the performance of Mahalanobis distance as a criterion for choosing an optimal mapping method was tested. All methods generated very similar results. However, the compositional kriging and cokriging results were slightly more similar to each other than to the other pair, as were log-ratio cokriging and additive log-ratio cokriging. The similar results of the two methods within each pair were due to similarities of the methods themselves, for example, the same variogram models and prediction techniques, and the similar results between the two pairs were due to the mathematical relationship between original and log-ratio transformed data. Mahalanobis distance did not prove to be a good indicator for selecting an optimal method to map soil psf.  相似文献   

15.
Two different Markov models for cross-covariance and coregionalization modeling are proposed and compared in cokriging and stochastic simulation modes. The newly introduced Markov model 2 performs better in cases where the secondary data are defined on a larger support volume than the primary variable being estimated or simulated. Incorrect adoption of the more traditional Markov model 1 may result in cokriging estimated maps that are artificially too close to the secondary data map and in simulated realizations with too high nugget effect.  相似文献   

16.
Cokriging allows the use of data on correlated variables to be used to enhance the estimation of a primary variable or more generally to enhance the estimation of all variables. In the first case, known as the undersampled case, it allows data on an auxiliary variable to be used to make up for an insufficient amount of data. Original formulations required that there be sufficiently many locations where data is available for both variables. The pseudo-cross-variogram, introduced by Clark et al. (1989), allows computing a related empirical spatial function in order to model the function, which can then be used in the cokriging equations in lieu of the cross-variogram. A number of questions left unanswered by Clark et al. are resolved, such as the availability of valid models, an appropriate definition of positive-definiteness, and the relationship of the pseudo-cross-variogram to the usual cross-variogram. The latter is important for modeling this function.  相似文献   

17.
A multivariate geostatistics (cokriging) is used for regional analysis and prediction of rainfall throughout the southwest region of Saudi Arabia. Elevation is intruded as a covariant factor in order to bring topographic influences into the methodology. Sixty-three representative weather stations are selected for a 21-year period covering different microclimate conditions. Results show that on an annual basis, there is no significant change using elevation. On the seasonal basis, the cokriging method gave more information about rainfall occurrence values, its accuracy related to the degree of correlation between elevation and rainfall by season. The prediction of spring and winter rainfall was improved owing to the importance of orographic processes, while the summer season was not affected within its monsoon climatology. In addition, fall season shows inverse and weak correlation of elevation with rainfall. Cross-validation and cokriging variances are also used for more accuracy of rainfall regional estimation. Moreover, even though the correlation is not significant, the isohyet values of cokriged estimates provided more information on rainfall changes with elevation. Finally, adding more secondary variables in addition to elevation could improve the accuracy of cokriging estimates.  相似文献   

18.
Environmental studies require multivariate data such as chemical concentrations with space-time coordinates. There are two general conditions related to such data: the existence of correlations among the coregionalized variables and the differences in numbers of data which occur because of insufficient data caused by measurement error or bad weather conditions. This study proposes geostatistical techniques for space-time multivariate modeling that take into consideration these correlations and data absences. These techniques consist of suitable modeling of semivariograms and cross-semivariograms for quantifying correlation structures among multivariables and of extending standardized ordinary cokriging. The tensor product cubic smoothing surface method is used for space-time semivariogram modeling. These methods are applied to the chemical component data of the Ariake Sea, a typical closed sea in southwest Japan. In order to clarify environmental changes in the Ariake Sea, the concentration data of four nutritive salts (NO2–N, NO3–N, NH4–N, and PO4–P) at 38 stations over 25 years are used as environmental indicators. For each of the kinds of data, there are spaces and times for which there is no data available. The effectiveness of the modeling of space-time semivariograms and the high estimation capability of the extended cokriging are demonstrated by cross-validation. Compared with ordinary kriging for a single variable, multivariate space-time standardized ordinary cokriging can provide a more detailed concentration map of nutritive salts and while elucidating their temporal changes over sparsely spaced data areas. In the space-time models by ordinary kriging, on the other hand, smooth trends are obvious.  相似文献   

19.
Universal cokriging is used to obtain predictions when dealing with multivariate random functions. An important type of nonstationarity is defined in terms of multivariate random functions with increments which are stationary of orderk. The covariance between increments of different variables is modeled by means of the pseudo-cross-covariance function. Criteria are formulated to which the parameters of pseudo-cross-covariance functions must comply so as to ensure positive-definiteness. Cokriging equations and the induced cokriging equations are given. The study is illustrated by an example from soil science.  相似文献   

20.
Universal cokriging is used to obtain predictions when dealing with multivariate random functions. An important type of nonstationarity is defined in terms of multivariate random functions with increments which are stationary of orderk. The covariance between increments of different variables is modeled by means of the pseudo-cross-covariance function. Criteria are formulated to which the parameters of pseudo-cross-covariance functions must comply so as to ensure positive-definiteness. Cokriging equations and the induced cokriging equations are given. The study is illustrated by an example from soil science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号