首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To explore the effect of bulk composition on the solidus of carbonated eclogite, we determined near-solidus phase relations at 3 GPa for four different nominally anhydrous, carbonated eclogites. Starting materials (SLEC1, SLEC2, SLEC3, and SLEC4) were prepared by adding variable proportions and compositions of carbonate to a natural eclogite xenolith (66039B) from Salt Lake crater, Hawaii. Near-solidus partial melts for all bulk compositions are Fe–Na calcio-dolomitic and coexist with garnet + clinopyroxene + ilmenite ± calcio-dolomitic solid solution. The solidus for SLEC1 (Ca#=100 × molar Ca/(Ca + Mg + FeT)=32, 1.63 wt% Na2O, and 5 wt% CO2) is bracketed between 1,050°C and 1,075°C (Dasgupta et al. in Earth Planet Sci Lett 227:73–85, 2004), whereas initial melting for SLEC3 (Ca# 41, 1.4 wt% Na2O, and 4.4 wt% CO2) is between 1,175°C and 1,200°C. The solidus for SLEC2 (Ca# 33, 1.75 wt% Na2O, and 15 wt% CO2) is estimated to be near 1,100°C and the solidus for SLEC3 (Ca# 37, 1.47 wt% Na2O, and 2.2 wt% CO2) is between 1,100°C and 1,125°C. Solidus temperatures increase with increasing Ca# of the bulk, owing to the strong influence of the calcite–magnesite binary solidus-minimum on the solidus of carbonate bearing eclogite. Bulk compositions that produce near-solidus crystalline carbonate closer in composition to the minimum along the CaCO3-MgCO3 join have lower solidus temperatures. Variations in total CO2 have significant effect on the solidus if CO2 is added as CaCO3, but not if CO2 is added as a complex mixture that maintains the cationic ratios of the bulk-rock. Thus, as partial melting experiments necessarily have more CO2 than that likely to be found in natural carbonated eclogites, care must be taken to assure that the compositional shifts associated with excess CO2 do not unduly influence melting behavior. Near-solidus dolomite and calcite solid solutions have higher Ca/(Ca + Mg) than bulk eclogite compositions, owing to Ca–Mg exchange equilibrium between carbonates and silicates. Carbonates in natural mantle eclogite, which have low bulk CO2 concentration, will have Ca/Mg buffered by reactions with silicates. Consequently, experiments with high bulk CO2 may not mimic natural carbonated eclogite phase equilibria unless care is taken to ensure that CO2 enrichment does not result in inappropriate equilibrium carbonate compositions. Compositions of eclogite-derived carbonate melt span the range of natural carbonatites from oceanic and continental settings. Ca#s of carbonatitic partial melts of eclogite vary significantly and overlap those of partial melts of carbonated lherzolite, however, for a constant Ca-content, Mg# of carbonatites derived from eclogitic sources are likely to be lower than the Mg# of those generated from peridotite.  相似文献   

3.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

4.
The instability of transition metal dolomites [CaR2+(CO3)2 where R2+ is Fe, Co, Ni, Cu, or Zn] and the limited substitution of transition metal cations for Mg in the dolomite structure can be accounted for by the effect of octahedral distortion. For example, trigonal elongation of the Fe octahedron, due to the Jahn-Teller effect, observed in siderite and ankerite, results in elongation of the Ca octahedron which is sensitive to distortion because the radius of Ca2+ is close to the upper limit for octahedral coordination. Co, Ni, Cu, Zn octahedra are also thought to be deformed, relative to Mg octahedra, in carbonates.The free energy of formation (ΔGof) of R2+CO3 becomes more positive with increasing octahedral distortion. Estimated ΔGof(dolomite) as well as stabilities and solubility limits of R2+ in natural and synthetic dolomites suggest a series in order of decreasing stability: Mg >Mn >Zn >Fe >Co >Ni >Cu.ΔGof(est.) for the terminal Fe-dolomite solid solution [72 mol% CaFe(CO3)2] in the system CaCO3-MgCO3-FeCO3 may represent an empirical threshold value for dolomite stability which lies between ΔGof for Mn- and Zn-dolomites. While Zn-dolomite is probably not a stable phase, very extensive solid solution toward CaZn(CO3)2 is to be expected in the system CaCO3-MgCO3-ZnCO3. The tendency for transition metal dolomites to contain excess CaCO3 can also be accounted for in terms of octahedral distortion and AGof.  相似文献   

5.
We studied the effects of seed material and solution composition on calcite crystal precipitation using a pH-stat system. The seed materials investigated included quartz, dolomite, two calcites with different particle size and specific surface area, and two dried precipitates from precipitative softening water treatment plants. Our results indicated that, of the seed materials examined, only calcite had the ability to initiate calcite precipitation in a solution with a degree of supersaturation of 5.3 over a period of two hours, and that the precipitation rate was proportional to the available surface area of the seed. For different solution compositions with the same degree of supersaturation, the calcite precipitation rate increased with increasing carbonate/calcium ratio, which contradicts the generally accepted empirical rate expression that the degree of supersaturation is the sole factor controlling precipitation kinetics. By applying a surface complexation model, the surface concentrations of two species, >CO3 and >CaCO3, appear to be responsible for catalyzing calcite precipitation.  相似文献   

6.
Summary ?The low-pressure eutectic for the coprecipitation of calcite, portlandite, and periclase/brucite (with H2O-rich vapor) has served as a model for the existence and crystallization of carbonatite magmas. Attempts to determine conditions for the appearance of dolomite at this eutectic have been unsuccessful. We have discovered a second low-temperature eutectic for more magnesian liquids which excludes portlandite and includes dolomite (all results are vapor-saturated). Addition of Ca(OH)2-Mg(OH)2 to CaCO3-MgCO3 at 0.2 GPa depresses the liquidus to temperatures below the crest of the calcite-dolomite solvus; the vapor-saturated liquidus surface falls steeply, and the field boundary for liquids coexisting with calcite and periclase reaches a peritectic at 880 °C, where a narrow field for liquidus dolomite begins, extending down to the eutectic at 659 °C for the coprecipitation of calcite, dolomite and periclase (brucite should replace periclase at slightly higher pressures). The calcite liquidus is very large. The field boundary for coexistence of calcite and dolomite extends approximately in the direction from CaMg(CO3)2 towards Mg(OH)2. The results illustrate conditions for the formation of mineral-specific cumulates from variable magma compositions. Hydrous (or sodic) carbonate-rich liquids with compositions from CaCO3 to CaMg(CO3)2 will precipitate calcite-carbonatites first, followed by calcite-dolomite-carbonatites, with the prospect of precipitating dolomite-carbonatite alone through a limited temperature interval, and with periclase joining the assemblage in the closing stages. Periclase in the Fe-free system may represent the ubiquitous occurrence of magnetite in natural carbonatites. The restricted range for the precipitation of dolomite-carbonatites adds credibility to the evidence for primary magnesiocarbonatite (near-dolomite composition) magmas. Magnesiocarbonatite magmas can precipitate much calcite-carbonatite rock.
Zusammenfassung ?Calciokarbonatitische und magnesiokarbonatitische Gesteine und Magmen im System CaO-MgO-CO 2 -H 2 O bei 0.2 GPa Das Niedrigdruck-Eutektikum der gemeinsamen Ausscheidung von Calcit, Portlandit und Periklas/Brucit (mit H2O-reicher Fluidphase) diente als Modell um die Existenz und Kristallisation karbonatitischer Magmen zu erkl?ren. Versuche die Bedingungen des Auftretens von Dolomit an diesem Eutektikum zu bestimmen blieben bisher ergebnislos. Wir entdeckten ein zweites Niedrigtemperatur-Eutektikum für magnesiumreichere Schmelzen, das Portlandit ausschlie?t, aber Dolomit inkludiert (alle Ergebnisse bei Fluids?ttigung). Die Zugabe von Ca(OH)2-Mg(OH)2 zu CaCO3-MgCO3 bei 0.2 GPa senkt den Liquidus auf Temperaturen unter die Solvus-Schwelle von Calcit-Dolomit. Die fluidges?ttigte Liquidusfl?che verl?uft steil und die Grenzfl?che von Schmelze, die mit Calcit und Periklas koexistiert erreicht ein Peritektikum bei 880 °C. Dort ?ffnet sich ein schmales Feld für Liquidus-Dolomit, das bis zum Eutektikum bei 659 °C reicht, an dem Calcit, Dolomit und Periklas (Brucit sollte Periklas bei geringfügig h?heren Drucken ersetzen) gemeinsam ausgeschieden werden. Der Calcit- Liquidus ist sehr gro?. Die Linie an der Calcit und Dolomit koexistieren erstreckt sich ungef?hr von CaMg(CO3)2 zu Mg(OH)2. Die Ergebnisse zeigen die Bildungsbedingungen für die Bildung mineralspezifischer Kumulate aus unterschiedlichen Magmenzusammensetzungen. Aus w?ssrigen (oder Na-reichen) karbonatreichen Schmelzen mit Zusammensetzungen zwischen CaCO3 und CaMg(CO3)2 werden sich zuerst Calcitkarbonatite und dann Calcit-Dolomitkarbonatite ausscheiden, mit der M?glichkeit Dolomitkarbonatite über ein sehr eingeschr?nktes Temperaturintervall zu bilden und mit Periklas, der zu dieser Vergesellschaftung im Endstadium hinzukommt. Periklas im Fe-freien System k?nnte das weitverbreitete Analog zu Magnetit in natürlichen Karbonatiten sein. Der enge Bereich für die Ausscheidung von Dolomitkarbonatiten untermauert die Existenz prim?rer magnesiokarbonatitischer Magmen (nahe der Zusammensetzung von Dolomit). Magnesiokarbonatitische Magmen k?nnen daher entsprechende Mengen an calcitkarbonatitischen Gesteinen ausscheiden.


Received July 20, 1998;/revised version accepted August 18, 1999  相似文献   

7.
Aragonite, the dense form of CaCO3, grew hydrothermally at 100–300° C and dry at 300–400° C at very low pressures from calcite strained by grinding. Nearly complete inversion to aragonite occurred in some runs with Ca-Mg chloride solutions at 0–2.4 kb and 100–200° C on strained calcite having a (10¯14) reflection with a half-width of 0.48° 2 Cu K. A little aragonite grew dry at one atm. from the ground calcite at 300–400° C in a few hrs. Simultaneous shear during recrystallization of calcite in a rotating squeezer resulted in significant aragonite at 300–400° C several kb. below the stability field. No inversion occurred in any ground calcite when previously annealed in CO2 at 500° C for a few hrs. Thermochemical data show that at least 200 cal/mole of strain energy can be produced in calcite by mild deformation. This much stored energy would lower the pressure requirements of aragonite, relative to the strained calcite by more than 3 kb, and our observation that aragonite growth was faster than strain recovery of calcite indicates that aragonite can grow in nature at reduced pressures from strained calcite.Some experiments were also carried out on highly magnesian calcites with the thought that aragonite might also form at the expense of this metastable material. No aragonite was produced, but the possibility that this mechanism could be operative in nature cannot be discounted.The microtexture of aragonitic deformed marbles from NW Washington (prehnite-pumpellyite facies rocks, courtesy of J. A. Vance) as well as electron probe microanalysis of these rocks indicates that aragonite selectively replaced highly strained calcite. The calcite-aragonite transition is thus a questionable indicator of high-pressure in certain metamorphic rocks.  相似文献   

8.
Summary Phase fields intersected by three joins in the System CaO-MgO-SiO2-CO2-H2O at 2 kbar were investigated experimentally to determine the melting relationships and the sequences of crystallization of liquids co-precipitating silicate minerals and carbonates. These joins connect SiO2 to three mixtures of CaCO3-MgCO3-Mg(OH)2 with compositions on the primary îield for calcite, between the composition CaCO3 and the low-temperature (650°C eutectic liquid co-precipitating calcite, dolomite and periclase. In the pseudo-quaternary tetrahedron calcite-magnesite-brucite-diopside, two of the significant reactions found are: (1) a eutectic at 650°C, calcite + dolomite + periclase + forsterite + vapor = liquid, and (2) a peritectic at 1038°Cwhich is either calcite + åkermanite + forsterite + vapor = monticellite + liquid calcite + monticellite + forsterite + vapor = åkermanite + liquid. The eutectic liquid has high MgO/CaO and CO2/H2O and only 2–3% SiO2 (estimated 15–20% MgCO3, 35–40% CaCO3, 40–45% Mg(OH)2, and 5–6% Mg2SiO4). The composition joins intersect a thermal maximum for åkermanite + forsterite + vapor = liquid, which separates high-temperature liquids precipitating silicates together with a little calcite, from low-temperature liquids precipitating carbonates with a few percent of forsterite; there is no direct path between the silicate and synthetic carbonatite liquids on these joins, but it is possible that fractionating liquid paths diverging from the joins may connect them. More complex relationships involving the pprecipitatioon off monticellite and åkermanite are also outlined. Magnetite-magnesioferrite may replace periclase in natural magmatic systems. The results indicate that the assemblage calcite-dolomite-magnetite-forsterite represents the closing stages of crystallization of carbonatites, whereas assemblages such as calcite-magnetite-forsterite and dolomite-magnetite-forsterite span the whole range of carbonatite evolution in terms of temperature and composition, and provide the link between liquids precipitating silicates and those precipitating carbonates.
Die Beziehungen zwischen silikarischen Schmelzen und karbonatbildenden Schmelzen im System CaO-MgO-SiO2-CO2-H2O bei 2 kbar
Zusammenfassung Phasenfelder, die durch den Schnitt von drei Verbindungslinien im System CaO-MgO-SiO2-CO2-H2Odefiniert werden, wurden experimentell bei 2 kbar untersucht, um die Schmelzbeziehungen und die Kristallisationsfolge von Schmelzen, die gleichzeitig silikatische und karbonatische Minerale ausscheiden, zu bestimmen. Diese Linien verbinden SiO2 mit drei Mischungen von CaCO3-M9CO3-Mg(OH)2 mit Zusammensetzungen im primären Calcitfeld, zwischen der Zusammensetzung CaCO3 und der tieftemperierten (650°C Calcit-, Dolomit- und Periklasbildenden eutektischen Schmelze. Zwei wichtige im ppseudo-quaternären Tetraeder Calcit-Magnetit-Brucit-Diopsid gefundene Reaktionen sind: (1) Ein Eutektikum bei 650°C Calcit + Dolomit + Periklas + Forsterit + Vapor = Liquid und (2) ein Peritektikum bei 1038°C mit entweder Calcit + Åkermanit + Forsterit + Vapor = Monticellit + Liquid oder Calcit + Monticellit + Forsterit + Vapo = Åkermanit + Liquid Die eutektische Schmelze zeigt hohe MgO/CaO und CCO2H2O Verhältnisse und nur 2–3% SiO2(geschätzter Anteil an MgCO315–20%, CaCO3 35–40%, Mg(OH)2 40–50% und Mg2SiO4 5–6%). Die Verbindungslinie schneidet ein thermisches Maximum von Åkermanit + Forsterit + Vapor = Liquid, das höher temperierte Schmelzen, die Silikate gemeinsam mit etwas Clacit ausscheiden, von tiefer temperierten Schmelzen trennt, aus denen sich Karbonate gemeinsam mit wenigen Prozenten Forsterit abscheiden. Es existiert keine direkte Verbindung zwischen silikatischen und synthetischen karbonatitischen Schmelzen entlang dieser Verbindungslinien, es wäre aber möglich, daß Fraktionierungspfade, die von diesen Verbindungslinien ausgehen, sie verbinden. Komplexere Beziehungen, die die Kristallisation von Monticellit und Åkermanit beinhalten, werden ebenfalls aufgezeigt. Magnetit-Magnesioferrit könntean die Stelle von Periklas in nnatürlichenmagmatischen Systemen treten. Die Ergebnisse weisen darauf bin, daß die Vergesellschaftung Calcit-Dolomit-Magnetit-Forsterit das Endstadium der Karbonatitkristallisation repräsentiert, während die Vergesellsschaftungen von Calcit-Magnetit-Forsterit bzw. Dolomit-Magnetit-Forsterit die gesamte Spannweite der Karbonatitevolution hinsichtlich Temperatur und Zusammensetzung umfassen und demnach ein Verbindungsglied zwischen silikat- und karbonatausscheidenden Schmelzen darstellen.


With 8 Figures  相似文献   

9.
Subsolidus and melting relations for the CaCO3-MgCO3 join at 30 kb have been determined using piston-cylinder apparatus. Data are also presented for the melting curve of CaCO3 to 30 kb, the decomposition and melting curves of MgCO3 to 36 kb, and the calcite-aragonite transition at 800°C, 950°C and 1100°C. At 30kb, the melting loop for the CaCO3-MgCO3 join extends from 1610°C (CaCO3) to 1585°C (MgCO3) through a liquidus minimum at 1290°C (near 42 mole% MgCO3). The dolomite-magnesite solvus barely intersects the 30 kb melting loop to produce a peritectic reaction at 1385°C. Integration of the new experimental data with other published data permits construction of a complete P-T projection and a sequence of isobars for the CaCO3-MgCO3 join for pressures between 5 and 30 kb. The phase relations for this join provide part of the essential framework of the model peridotite system CaO-MgO-SiO8-CO2-H2O, which has particular application to the origin of carbonatitic and kimberlitic magmas. In light of the accumulating evidence for CO2 in various forms within the upper mantle and of its effect on magmatic processes, analysis of the melting relations in this system is of considerable importance.  相似文献   

10.
Carbon and oxygen isotopic analyses of silicate and carbonate minerals indicate that isotopic compositions in metasediments of the Wallace Formation (Belt Supergroup) exposed northwest of the Idaho batholith have been affected by both prograde and retrograde fluid-rock interaction. Silicates retain isotopic fractionations that reflect equilibration at peak metamorphic temperatures. In contrast, calcite oxygen isotopic compositions range from δ18O(Calcite)=+2.3 to +18.6‰ SMOW (standard mean oceanic water) and indicate that some calcites have exchanged with low-δ18O meteorichydrothermal fluids. Values of Δ18O (Quartz-Calcite) as large as +15.5 clearly indicate that the isotopic depletion of these calcites postdates the peak of regional metamorphism. Carbon isotopic compositions of 18O-depleted calcites are not significantly shifted relative to δ13C values in undepleted calcites, suggesting that the retrograde fluid was carbon-poor. Petrographically, retrograde fluid-rock interaction is associated with the occurrence of fine-grained, highly-luminescent calcite overgrowths on less-luminescent, metamorphic calcites, slight to moderate argillic alteration, and pseudomorphing of scapolite porphyroblasts by fine-grained albite. Retrograde isotopic depletions may be related to shallow meteoric-hydrothermal fluid flow developed around the Idaho batholith after intrusion and rapid uplift of the terrane. Peak metamorphic isotopic compositions in the Wallace Formation reflect mineralogically heterogeneous protolith compositions and isotopic fractionation due to devolatilization and/or infiltration. Variability in oxygen isotopic compositions on the order of 4–6‰ within the same rock type can be attributed to the combined effects of inherited isotopic compositions and isotopic shifts resulting from prograde devolatilization. Isotopic and compositional heterogeneity on the scale of mm to m precludes generalization of isotopic gradients on a regional scale. The isotopic data presented here, and metamorphic fluid compositions determined in previous studies, are best reconciled with heterogeneous bulk compositions, dominantly channelized prograde and retrograde fluid flow, and locally low fluid-rock ratios.  相似文献   

11.
Solid inclusions of halite and sylvite, formed during regional and contact metamorphism have been identified by microscopy and by electron microprobe analysis in rocks from Campolungo, Switzerland and Cornone di Blumone, Italy. The solid inclusions occur in several of the major minerals crystallized during metamorphism and have been observed as idiomorphic crystals and dendrites. The compositions measured in 100 analyses from Campolungo, Switzerland and 40 analyses from Cornone di Blumone, Italy extend across the two-phase region in the system, KCl-NaCl, indicating that the salt inclusions are high temperature precipitates. In both localities compositionally zoned and unzoned crystals have been found. Measured compositions on the temperature maximum of the two-phase region indicate at least 500° C which can be compared with 500°±20° C determined by Mercolli (1982) and Walther (1983) from the Mg content of calcites from Campolungo. The solid inclusions have been trapped apart from CO2-rich and saline, H2O-rich fluid inclusions which have been described by Mercolli (1982) as the earliest preserved fluid inclusions in the rocks. The early precipitation of salt minerals at Campolungo indicates that fluids were saturated with NaCl and KCl at 500° C and pressures of 2,000 bars or higher. Similar relationships exist between solid and fluid inclusions in the rocks of Cornone di Blumone which formed at temperatures as high as 800° C and pressures between 0.5 and 1 kilobar (Ulmer 1983). The entrapment of halite and sylvite as solid inclusions preserves the composition of the minerals which may therefore be useful as geothermometers.  相似文献   

12.
Phase relations on the diopside-jadeite join were experimentally determined at 16–22 GPa pressures and temperatures in the vicinity of 1500 °C under hydrous and 2100 °C under anhydrous conditions, using a split-sphere anvil apparatus (USSA-2000). Starting compositions on the diopside-jadeite join produced assemblages containing CaSiO3 perovskite. This assured that the coexisting garnet with compositions in the ternary system Mg2Si2O6(En)-CaMgSi2O6(Di)-NaAlSi2 O6(Jd) had the maximum Ca content possible under the given conditions. Garnet reached its maximum Ca content at 17 GPa, and exsolved CaSiO3 perovskite at higher pressures. The garnet composition closest to the join, En5Di47.5Jd47.5 (mol%), was reached at 18–19 GPa and 2100 °C. The maximum Na content of garnet limited by the coexisting pyroxene did not exceed 51 mol% jadeite at 22 GPa and 2100 °C. At 22 GPa, pyroxene was replaced with NaAlSiO4 (calcium ferrite structure) and stishovite under anhydrous conditions, while in the presence of H2O a new hydrous Na-bearing phase with the ideal composition Na7(Ca, Mg)3AlSi5O9(OH)18 was synthesized instead. Garnet coexisting with CaSiO3 perovskite and MgSiO3 ilmenite at 22 GPa and 1400 °C was En51Di9Jd40, coincidentally identical to the first garnet forming in the ternary system at 13 GPa. The new data are applicable to the Earth's transition zone (400–670 km depths) and suggest that the transformation from eclogite to garnetite would occur primarily over a limited depth interval from 400 to 500 km. Gaps in the observed garnet compositions suggest immiscibility, which could potentially cause a sharp 400 km discontinuity in an eclogitic mantle.  相似文献   

13.
A semi-automatic, on-line method was developed to determine the δ13C and δ18O values of coexisting calcite and dolomite. An isotopic mass balance is used to calculate the compositions of dolomite after having measured that of calcite and of the “bulk” sample. The limit of validity of this method is established by performing isotopic measurements of artificial mixtures made of precisely weighted and isotopically-characterised dolomite and calcite. The accuracy and repeatability of the calculation of dolomite δ13C and δ18O are statistically determined with a Monte-Carlo procedure of error propagation. Stable isotope ratios are determined by using an automated MultiPrep™ system on-line with an isotope-ratio mass-spectrometer (IRMS). The reaction time and the temperature of reaction were optimised by comparing the results with the isotopic composition of known mixtures. The best results were obtained by phosphoric acid digestion after 20 min at 40 °C for calcite and 45 min at 90 °C for dolomite. This procedure allows an accurate determination of the isotopic ratios from small samples (300 μg). Application of this protocol to natural mixtures of calcite and dolomite requires the accurate determination of the relative abundance of calcite and dolomite by combining Mélières manocalcimetry (MMC) and X-ray diffractometry (XRD).  相似文献   

14.
Recent work has established that marine teleost (bony) fish represent a prolific source of mud grade, mainly high‐Mg calcite, carbonate sediment by means of primary precipitation within the intestine. Previously documented crystalline products display a diverse array of morphologies, many unique in shallow tropical marine settings, and have a wide range of magnesium contents (from 18 to 39 mol% MgCO3). This study utilizes scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction and liquid ion chromatography to provide a more extensive and expansive morphological, mineralogical and chemical characterization of the crystalline forms produced by a wider range of piscine functional groups (covering 21 different fish species common in The Bahamas). Several crystal morphologies not previously described in fish‐derived carbonates are documented, and chemical composition is found to be more variable than previously reported: in addition to high‐Mg calcites with >18 mol% MgCO3, high‐Mg calcites with lower MgCO3 contents and low‐Mg calcites are identified. From the expanded species range, MgCO3 content in fish‐derived carbonates ranges from ca 0˙5 to > 40 mol%, and particle length is in the range 0˙1 to >50 μm (typically <2 μm for individual crystals). Amorphous Mg‐carbonates (with detectable CaCO3 of <2 mol%) are also found to varying extent in the precipitates of many species. Dominant mineralogy and MgCO3 content varies with producing species and crystal morphology (itself a species‐dependent variable). Given the very small grain size and often high MgCO3 contents of these carbonates, interesting questions arise about their preservation potential. Thus, the extent to which carbonates produced by different species may follow different post‐excretion preservation pathways is considered.  相似文献   

15.
The characteristics and formation mechanism of calcite cements in the tight sandstone of the Jurassic Lianggaoshan Formation in the northeastern Central Sichuan Basin were analysed using petrographic and isotopic techniques. In the tight sandstone of the Lianggaoshan Formation, cements are mostly calcite and occur as poikilitic, pore-filling, fracture-filling and replacement of clastic particles. Contents of Al, Si, Fe and Mn in the poikilitic calcites are significantly less than that in the dissolution pore-filling and metasomatic calcites. Three stages (early, middle and late) of authigenic calcites correspond to temperature ranges of <60, 60–100 and ≥100?°C, respectively, with most calcite cements formed under lower temperature (<100?°C) conditions. The δ18O values of the early–middle authigenic calcites are in equilibrium with connate water, and the δ18O values of late calcites are depleted in 18O indicating equilibrium at higher temperatures. The early authigenic calcites precipitated in a relatively open system associated with CO2 from bacterial fermentation at an immature to low-mature stage, and a Ca2+- and alkaline-rich environment owing to hydration–hydrolysis and dissolution of silicate minerals during phase A of eodiagenesis. The middle–late authigenic calcites precipitated in a relatively closed system with CO2 from decarboxylation of organic acids and Ca2+ from dissolution of silicate minerals and transformation of clay minerals during phase B of eodiagenesis to mesodiagenesis. Calcite cements mainly occur in the medium and fine sandstones of sand flats and beach bars. Authigenic calcite dissolution is extremely weak, and calcite cementation is pore-space destructive.  相似文献   

16.
The solubility of calcite in NaCl-H2O and in HCl-H2O fluids was measured using an extraction-quench hydrothermal apparatus. Experiments were conducted at 2 kbar, between 400° C and 600° C. Measurements in NaCl-H2O were conducted in two ways: 1) at constant pressure and NaCl concentration, as a function of temperature; and 2) at constant pressure and temperature, as a function of NaCl concentration. In both the NaCl-H2O and the HCl-H2O systems, the solubility of calcite increases with increasing chlorine concentrations. For example, the log calcium molality in equilibrium with calcite increases from –3.75 at 2 kbar and 500° C, in pure H2O to –3.10 at 2 kbar and 500° C at log NaCl molality=–1.67. At fixed pressure and NaCl molality, the solubility of calcite is almost constant from 400° C to 550° C, but increases somewhat at higher temperatures. The results can be used to determine the dominant calcium species in the experimental solutions as a function of NaCl concentration and to obtain values for the second dissociation constant of CaCl2(aq). At 2 kbar, 400° C, 500° C, and 600° C, we calculate values for the log of the dissociation constant of CaCl+ of –2.1, –3.2, and –4.3, respectively. The 400° C and 500° C values are consistent with those obtained by Frantz and Marshall (1982) using electrical conductance techniques. However, our 600° C value is 0.8 log units higher than that reported by Frantz and Marshall. The calcite solubilities in the NaCl-H2O and HCl-H2O systems are inconsistent with the solubilities of calcite in pure H2O reported by Walther and Long (1986). They are, however, consistent with the measurements of calcite solubilities in pure H2O presented in this study. These results allow for the calculation of the solubilities of calcium silicates and carbonates in fluids that contain CO2 and NaCl.  相似文献   

17.
Garnet-clinopyroxene geothermometry has been applied to numerous rock types from the blueschist and eclogite terrain of the Sesia zone in the Western Alps. Discrepancies in apparent temperatures of up to 600° C have been found suggesting substantial deviation from ideal behaviour of the garnet-clinopyroxene equilibria in certain assemblages. Assemblages containing jadeitic pyroxenes rather than omphacitic or diopsidic pyroxenes yield very low K D (2.0) values and correspondingly high apparent temperatures (> 1,000° C). The garnets coexisting with high-Na pyroxenes have compositions similar to those coexisting with omphacitic pyroxenes. Departure from ideal behaviour of these garnets is likely to be minor and is accomodated in the formulation of the geothermometer. Numerous examples of coexisting garnet-clinopyroxene pairs indicate that there is no obvious relationship of K D with jadeite content in pyroxenes with jadeite content less than 70%, but at higher values, K D varies inversely with the jadeite content. The dependence of K D upon the jadeite content in the high-Na pyroxenes is believed to be due to the preference of M2 sites for Fe2+ in the enstatite-jadeite substitution (Fe2+MgNa–1Al–1). This substitution is usually very limited and has no demonstrable effect upon X Fe Cpx when the M1 (Fe2++Mg) content of the pyroxenes is high as in omphacitic and diopsidic pyroxenes. However, when the M1 (Fe2++Mg) content is low, as in jadeitic pyroxenes, the non-ideality of the enstatite type exchange has a marked effect on X Fe Cpx and consequently on garnet-clinopyroxene calculations.  相似文献   

18.
Active ankerite cementation in the subsurface Eocene of southwest Texas   总被引:4,自引:0,他引:4  
In subsurface samples of Wilcox (Eocene) sandstones, calcite cements occur above 2315 m depths, whereas ankerites occur at depths from 2560 m (temperatures 125 ° C) to at least 4650 m (temperatures 210 ° C). Microprobe analyses indicate that some shallow ankerites have appreciable excess calcium, analogous to protodomites. Ankerites at depths greater than 3200 m have compositions of about CaMg0.5Fe0.5(CO3)2.Oxygen isotope data suggests that the ankerites are similar to low temperature hydrothermal dolomites and that they have probably formed in pore fluids with higher O18/O16 ratios than sea water. The isotopic data also suggest that the ankerites have formed over a more limited temperature interval than they occur today.The ankerite is believed to have formed from calcite by the reaction 4CaCO3+Fe2++Mg2+=2CaMg0.5Fe0.5(CO3)2 +2Ca2+. Iron and magnesium for this reaction was apparently released by the breakdown of smectite to illite in mixed-layer clays. Bulk chemical analyses suggest that some iron was transferred from shales into sandstones. Mass balance and chemical considerations are compatible with this model.  相似文献   

19.
Fluid inclusion studies combined with the isotope geochemistry of several generations of fracture calcite from the Olkiluoto research site, Finland, has been used to better understand the past thermal and fluid history in the crystalline rock environment. Typically, fracture mineral investigations use O and C isotopes from calcite and an estimate of the isotopic composition of the water that precipitated the calcite to perform δ18O geothermometry calculations to estimate past temperature conditions. By combining fluid inclusion information with calcite isotopes, one can directly measure the temperature at which the calcite formed and can better determine past fluid compositions. Isotopic, petrologic and fluid inclusion studies at the Olkiluoto research site in Finland were undertaken as part of an investigation within the Finnish nuclear waste disposal program. The study revealed that four fluids were recorded by fracture calcites. From petrologic evidence, the first fluid precipitated crystalline calcite at 151–225°C with a δ13C signature of −21 to −13.9‰ PDB and a δ18O signature of 12.3–13.0‰ SMOW. These closed fracture fillings were found at depths greater than 500 m and were formed from a high temperature, low salinity, Na–Cl fluid of possible meteoric water altered by exchange with wallrock or dilute basinal origin. The next fluid precipitated crystalline calcite with clay at 92–210°C with a δ13C signature of −2.6 to +3.8‰ PDB and a δ18O signature of 19.4–20.7‰ SMOW. These closed fracture fillings were found at depths less than 500 m and were formed from a moderate to high temperature, low to moderate salinity, Na–Cl fluid, likely of magmatic origin. The last group of calcites to form, record the presence of two distinct fluid types. The platy (a) calcite formed at 95–238°C with a δ13C signature of −12.2 to −3.8‰ PDB and a δ18O signature of 14.9–19.6‰ SMOW, from a high temperature, low salinity, Na–Cl fluid of possible magmatic origin. The platy (b) calcite formed at 67–98°C with a δ13C signature of −13.0 to −6.2‰ PDB and a δ18O signature of 15.1–20.1‰ SMOW, from a low temperature, high salinity, Ca–Na–Cl fluid of possible basinal brine origin. The two calcites are related through a mixing between the two end members. The source of the fluids for the platy grey (a) calcites could be the olivine diabase dykes and sills that cut through the site. The source of fluids for the platy (b) calcites could be the Jotnian arkosic sandstone formations in the northern part of the site. At the Olkiluoto site, δ18O geothermometry does not agree with fluid inclusion data. The original source of the water that forms the calcite has the largest effect on the isotopic signature of the calcites formed. Large isotopic shifts are seen in any water by mineral precipitation during cooling under rock–water equilibrium fractionation conditions. Different calcite isotopic signatures are produced depending on whether cooling occurred in an open or closed system. Water–rock interaction, at varying W/R ratios, between a water and a host rock can explain the isotopic shifts in many of the calcites observed. In some cases it is possible to shift the δ18O of the water by +11.5‰ (SMOW) using a realistic water–rock ratio. This process still does not explain some of the very positive δ18O values calculated using fluid inclusion data. Several other processes, such as low temperature recrystallization, boiling, kinetic effects and dissolution of calcite from fluid inclusion walls can affect isotopic signatures to varying degrees. The discrepancy between fluid inclusion data and δ18O geothermometry at the Olkiluoto site was most likely due to poor constraint on the original source of the water.  相似文献   

20.
The stability relations of calcite and siderite in the system Ca2+-Fe2+-CO 3 2– Cl 2 2– -H2O have been determined between 150 and 400° C in the pressure range from 250 to 2000 bars.It was found that the composition of the fluid phase coexisting with calcite and siderite is very poor in Fe2+ and correspondingly very rich in Ca2+ (see Tab. 1 and Fig. 3). The mole proportion Ca2+/(Ca2++Fe2+) exceeds the value 0.98 at temperatures below 250° C when fluid pressure is 1000 bars. The stability field of calcite narrows with decreasing temperature, increasing pressure, and decreasing concentration of dissolved salts (CaCl2++FeCl2). In our experiments siderite becomes unstable at about 400° C (see p. 158).The experimental data indicate that siderite will be formed by reaction of calcite with FeCl2-bearing solutions that have very low concentrations of Fe2+ as well as high Ca2+/(Ca2++Fe2+)-ratios. Solutions coexisting with calcite must be very poor in Fe2+, otherwise siderite is formed.

Herrn Prof. Dr. H. G. F. Wikkleb danke ich sehr für sein förderndes Interesse an dieser Arbeit und für eine kritische Durchsicht des Manuskriptes. Der Deutschen Forschungsgemeinschaft gebiihrt Dank für die Arbeitsmöglichkeit mit den Apparaturen, die Herrn Prof. Dr. Winkler zür Verfugung gestellt wurden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号